Abstract:
Provided are a gate driving circuit and a display device including the same. The gate driving circuit includes a first controller configured to control a first control node to act as a pull-up control node to turn on a first transistor when an activation clock is input to the first controller for a first unit time, and to be deactivated when a deactivation clock is input thereto for a second unit time; and a second controller configured to control a second control node to act as a pull-up control node to turn on a second transistor when the activation clock is input to the second controller for the second unit time, and to be deactivated when the deactivation clock is input thereto for the first unit time.
Abstract:
An organic light emitting display including a display panel having pixels coupled to data lines and first power voltage lines. Each of the pixels includes an organic light emitting diode; a driving transistor coupled to the organic light emitting diode and the first power voltage lines; a first transistor coupled to the data lines and a gate electrode of the driving transistor; a second transistor configured to supply a reference voltage of the data lines to a source electrode of the driving transistor; and a capacitor coupled to the gate and source electrodes of the driving transistor.
Abstract:
A gate driver may include: a controller to charge and discharge a first control node that pulls up an output voltage and a second control node that pulls down the output voltage; a first output unit having a first pull-up transistor to apply a gate high voltage to an output node in response to a charging voltage of the first control node, and a first pull-down transistor to apply a gate low voltage to the output node in response to a charging voltage of the second control node; and a switch unit to change a current path between a first output node and a first power line to which a high potential voltage is applied or a second power line to which a first clock signal is applied according to a carry signal transmitted from a previous signal transmission unit and a voltage level of the second control node.
Abstract:
An organic light emitting diode display device is disclosed which includes: a scan switch controlled by a scan pulse on a gate line and connected between a data line and a first node; a driving switch which includes a gate electrode connected to the first node, a source electrode connected to a second node, and a drain electrode connected to a first driving voltage line; a sensing switch controlled by a sensing control signal and connected between the second node and a third node on a sensing line; and an organic light emitting diode connected between the second node and a second driving voltage line.