Abstract:
An organic light emitting display includes a display panel including a plurality of pixels, each of the plurality of pixels including an organic light emitting diode (OLED) and a driving thin film transistor (TFT) to control an emission amount of the OLED, the plurality of pixels connected to respective sensing lines; and at least one sensing unit connected to a corresponding one of the pixels through the respective sensing line, the at least one sensing unit configured to sense an amount of carriers accumulated in a parasitic capacitor of the OLED of the corresponding one of the pixels when a driving current flows in the OLED, the at least one sensing unit thereby sensing a degradation of the OLED.
Abstract:
A pixel sensing device, an organic light emitting display device and a pixel compensation method thereof are disclosed. The pixel sensing device comprises a plurality of current integrators for sensing driving characteristics of pixels. Each current integrator comprises: an operational amplifier equipped with an inverting input terminal to which a first input voltage is applied according to a pixel current of the pixels, a non-inverting input terminal to which a second input voltage is applied according to the pixel current, and an output terminal through which an integral voltage corresponding to the pixel current is output; and a feedback capacitor connected between the inverting input terminal and the output terminal. The operational amplifier comprises: a pre-amplifying unit for lowering an amplifier input gain and being equipped with the inverting and non-inverting input terminals; and two gain amplifying units for receiving an output of the pre-amplifying unit and for making an amplifier output gain higher than the amplifier input gain.
Abstract:
The present disclosure is provided a display device. The display device includes subpixels and at least one scan line. The subpixels are formed on a first substrate, and each of the subpixels includes an emission area, in which a light emitting element for emitting light is disposed, and a circuit area in which a circuit for driving the light emitting element is disposed. The at least one scan line may be disposed on the circuit area in a horizontal direction. The at least one scan line may include: an upper scan line and a lower scan line spaced apart from each other; and a scan connection line positioned between the upper scan line and the lower scan line and electrically connecting the upper scan line and the lower scan line.
Abstract:
A display device, a data driving circuit and a display driving method are discussed. The display device can include a display panel in which a plurality of subpixel circuits including a light emitting element, a driving transistor, and a sensing transistor are disposed. The display device further can include a gate driving circuit configured to supply a plurality of scan signals to the display panel through a plurality of gate lines, a data driving circuit configured to supply a plurality of data voltages to the display panel through a plurality of data lines and supply a constant current to the plurality of subpixel circuits during a resistance sensing period, and a timing controller configured to control the gate driving circuit and the data driving circuit, and supply compensation image data to the display panel by using the resistance of the sensing transistor detected in the resistance sensing period.