Abstract:
A touch sensing system is disclosed. The touch sensing system includes an active stylus pen that generates a first pen driving signal for detecting a touch input in synchronization with a touch driving signal input from a touch screen and a second pen driving signal for detecting an additional input related to an additional function of the active stylus pen in a touch driving period and outputs the first and second pen driving signals to the touch screen; and a touch driving device that applies the touch driving signal to the touch screen, senses the first pen driving signal in a first period of the touch driving period, and senses the second pen driving signal in a second period of the touch driving period.
Abstract:
A display device which simultaneously secures a viewing angle and a touch sensing performance is discussed. The display device can include a light emitting device layer having a first light emitting area, a second light emitting area disposed adjacent to the first light emitting area and extending in a first direction, a third light emitting area disposed adjacent to the first light emitting area and extending in a second direction, and a fourth light emitting area disposed adjacent to the third light emitting area and extending in the first direction. The display device can further include an encapsulation layer covering the light emitting device layer, a touch electrode having a mesh structure non-overlapping the first to fourth light emitting areas, and a black matrix including opening portions overlapping the first to fourth light emitting areas.
Abstract:
A scan driver and display device using the same are disclosed. The display device includes display panel, a data driver configured to supply a data signal to the display panel, and a scan driver formed in a non-display area of the display panel, including a shift register composed of a plurality of stages and a level shifter formed outside the display panel, and configured to supply a scan signal to the display panel using the shift register and the level shifter. The scan driver comprises: a sensor circuit unit configured to sense internal and external environmental conditions and generate a compensation circuit control signal on the basis of a sensed result; and a compensation circuit unit generating a compensation signal to compensate outputs of the plurality of stages in response to the compensation circuit control signal.
Abstract:
A display device may include a display panel including a plurality of pixels; and a data driver circuit configured to supply a data signal to the plurality of the pixels through data lines. A gate driver circuit, configured to supply a gate signal to the plurality of the pixels through gate lines, is disposed in the display panel. The display panel includes a driving layer including a gate area having the gate driver circuit; and a pixel circuit layer including an active area having a pixel area in which each of the plurality of pixels is disposed and a non-active area around the active area. The pixel circuit layer includes a light emitting diode, a clock line configured to supply a clock signal to the gate driver circuit, and a shielding pattern between the light emitting diode and the clock line.
Abstract:
A display device includes a display panel and a scan driver including transistors formed in a non-display area of the display panel. A compensation voltage is supplied to the scan driver through a compensation gate electrode included in at least one transistor of the scan driver. Namely, the at least one transistor includes a gate electrode, to which a signal or a voltage for activating a channel is supplied, and the compensation gate electrode, to which the compensation voltage for recovering a threshold voltage is supplied.
Abstract:
An active stylus pen is insensitive to external noise and has enhanced sensing performance with respect to an uplink signal input from a touch screen. The active stylus pen includes a housing connected to a ground, a conductive tip protruding outwardly from one side of the housing and brought into contact with a touch screen, a conductor layer surrounding an outer surface of the housing with an insulator interposed therebetween, a pen driving circuit connected to the conductor layer, and a switch connecting the conductor layer and the pen driving circuit. The pen driving circuit is cased by the housing, receives an uplink signal and a touch sensor driving signal from the touch screen, generates a pen driving signal synchronized with the touch sensor driving signal and outputs the generated pen driving signal to the touch screen through the conductive tip.
Abstract:
A touch sensitive display device, a method for driving the same, and a driving circuit of the display device are disclosed. The touch sensitive display device comprises a display panel comprising a plurality of pixels and a plurality of touch sensors. Each touch sensor is connected to at least one respective pixel of the pixels, the display panel driven in a plurality of successive display frame periods and during each display frame period a respective frame of image data is driven to the pixels. A touch driving circuit drives touch driving signals to the touch sensors during a touch frame that begins in a first display frame period of the display frame periods and ends in a second display frame period of the display frame periods that immediately follows the first display frame period.
Abstract:
An active stylus pen generates a pen driving signal synchronized with a touchscreen driving signal received from a touchscreen and outputs the pen driving signal to the touchscreen. The active stylus pen includes a pressure sensing unit for sensing pressure when touching the touchscreen to generate writing pressure information and a signal processor for modulating the pen driving signal in response to the signal level of the writing pressure information and outputs the modulated signal as a pen driving signal in which the writing pressure information has been reflected.
Abstract:
A display device includes a display panel, a data driving circuit, a gate driving circuit, and a timing controller, each pixel of the display panel includes a light-emitting diode, a driving transistor, second to sixth switching transistors, and a storage capacitor, and at a sensing step at which the light-emitting diode does not emit light, a conduction path that is connected through the sixth switching transistor, the driving transistor, the second switching transistor, and the third switching transistor is formed, and an electrical signal reflecting a threshold voltage of one of the second to fourth switching transistors is transferred to a data line through the conduction path.
Abstract:
A touch sensing system and a method of driving the same are disclosed. The touch sensing system includes a touch screen integrated display panel provided with a plurality of touch sensors and a plurality of pixels, a timing controller time-dividing one display frame into a plurality of touch periods and a plurality of display periods, a microcontroller unit dividing a sensing mode of the plurality of touch sensors into a full scan mode and a local scan mode, and a touch integrated circuit (IC) sensing a finger touch input of the touch sensors through the touch periods in the full scan mode and time-division sensing a finger touch input and a pen touch input of the touch sensors through the touch periods in the local scan mode.