Abstract:
Disclosed is a method for fabricating a lightweight and thin liquid crystal display (LCD) device, using a supplementary substrate for processing of a thin glass substrate. Inactive gas is sprayed onto the surface of the substrate to thus remove OH groups from the surface, before the thin glass substrate and the supplementary substrate are attached to each other. Under such configuration, the supplementary substrate can be easily separated from a completed liquid crystal panel which is in an attached cell state, without any damages.
Abstract:
In a method of fabricating a lightweight and thin liquid crystal display (LCD), when an auxiliary substrate is used to perform a process of a thin glass substrate, the auxiliary substrate is separated from the thin glass substrate by detaching an edge portion between the thin glass substrate and the auxiliary substrate using a knife and then injecting air into the edge portion using an air knife, so that the auxiliary substrate can be easily separated from a liquid crystal panel in a cell state, which is attached by completing the process. Further, it is possible to optimize the shape of a push pin for forming a point at which the detachment of the edge portion is started.
Abstract:
In a method of fabricating a lightweight and thin liquid crystal display (LCD), when an auxiliary substrate is used to perform a process of a thin glass substrate, the auxiliary substrate is separated from the thin glass substrate by detaching an edge portion between the thin glass substrate and the auxiliary substrate using a knife and then injecting air into the edge portion using an air knife, so that the auxiliary substrate can be easily separated from a liquid crystal panel in a cell state, which is attached by completing the process. Further, it is possible to optimize the shape of a push pin for forming a point at which the detachment of the edge portion is started.
Abstract:
Discussed is an organic light-emitting display panel including: an active area corresponding to an image display region; and a non-active area corresponding to a region outside of the active area, wherein the active area includes a plurality of signal lines arranged in an array, wherein the non-active area includes a pad region to which a source driver IC is mounted, and a switching structure, wherein the pad region includes a plurality of pads arranged in correspondence with the array of the signal lines, and wherein the switching structure includes: a common reference voltage pad-connection terminal connected to a common reference voltage pad of the display panel; a plurality of reference voltage line-connection terminals connected to a plurality of reference voltage lines of the display panel; and a switching circuit to switch connections between the common reference voltage pad-connection terminal and the plurality of reference voltage line-connection terminals.
Abstract:
In a method for fabricating a lightweight and thin liquid crystal display (LCD), a first mother substrate, a subsidiary substrate and a thin second mother substrate are provided. An edge cut is formed by cutting edges of the first and second mother substrates and the subsidiary substrate to be inclined at a predetermined angle. An array process is performed on the first mother substrate. The subsidiary substrate is attached to the second mother substrate. A color filter process is performed on the second mother substrate having the subsidiary substrate attached thereto. The first and second mother substrates are attached together. The subsidiary substrate is separated from the first and second substrates by spraying air between the second mother substrate and the subsidiary substrate, in which the edge cut is formed.
Abstract:
A thin film transistor substrate presented herein includes a substrate, a first gate electrode on the substrate, the first gate electrode including a first portion and a second portion, an active layer on the first gate electrode, a second gate electrode on the active layer, the second gate electrode overlapping at least the first portion of the first gate electrode, a source electrode connected to a first side of the active layer, and a drain electrode connected to a second side of the active layer, wherein the first portion overlaps the second gate electrode, the second portion protrudes from an end of the first portion in a direction towards the source electrode or the drain electrode, and a thickness of the second portion is smaller than a thickness of the first portion. A display device includes the thin film transistor substrate as presented herein.
Abstract:
Disclosed is a method for fabricating a lightweight and thin liquid crystal display (LCD) device, using a supplementary substrate for processing of a thin glass substrate. Inactive gas is sprayed onto the surface of the substrate to thus remove OH groups from the surface, before the thin glass substrate and the supplementary substrate are attached to each other. Under such configuration, the supplementary substrate can be easily separated from a completed liquid crystal panel which is in an attached cell state, without any damages.