Abstract:
An in-plane switching (IPS) mode liquid crystal display (LCD) device includes a liquid crystal display panel having a first substrate, a second substrate, and a liquid crystal layer between the first and second substrates; a second polarizer on an outer surface of the second substrate, the second polarizer having a second polarizing element; and an in-cell retarder on an inner surface of the second substrate, wherein the in-cell retarder compensates a light leakage in a front direction of the liquid crystal display panel.
Abstract:
A light emitting display apparatus in which non-display light emitting devices are provided in a non-display area provided with a gate driver is provided. The light emitting display apparatus includes a light emitting display panel divided into a display area provided with pixels including light emitting devices and a non-display area provided outside the display area and a power supply supplying power to the light emitting display panel, wherein a gate driver for supplying gate pulses to gate lines provided in the light emitting display panel is provided in the non-display area, and a non-display light emitting device is connected to a non-display transistor provided in the gate driver.
Abstract:
Disclosed are an organic light emitting display capable of preventing lowering of brightness and prolonging its a lifespan, and a driving method thereof. The organic light emitting display controls a level of a gate signal, by outputting a gate high voltage after controlling a level of the gate high voltage, according to a level of a threshold voltage sensed from each pixel of a display panel.
Abstract:
An in-plane switching (IPS) mode liquid crystal display (LCD) device includes a liquid crystal display panel having a first substrate, a second substrate, and a liquid crystal layer between the first and second substrates; a second polarizer on an outer surface of the second substrate, the second polarizer having a second polarizing element; and an in-cell retarder on an inner surface of the second substrate, wherein the in-cell retarder compensates a light leakage in a front direction of the liquid crystal display panel.
Abstract:
By forming a repair structure in a horizontal direction and vertical direction by using one or more repair lines between two or more pixels adjacent to each other in a display panel, even though a dark spot appears due to a defective operation of one pixel, the one pixel may be compensated to be driven by using the other pixel.
Abstract:
An organic light emitting display device and a method of repairing the device are discussed. According to an embodiment, the device includes a display panel having pixels, each including an OLED in every pixel area defined as scan and data lines intersect with each other and having a repair structure in at least one of horizontal and vertical directions between adjacent pixels by one or more repair lines; a timing controller configured to generate compensation data when a dark spot is generated in one of the plurality of pixels of the display panel, and adjust a magnitude of image data according to the compensation data; and a data driver configured to adjust a magnitude of a data voltage according to the image data adjusted in magnitude, and output the data voltage adjusted in magnitude to the data lines.
Abstract:
Disclosed are an organic light emitting display capable of preventing lowering of brightness and prolonging its a lifespan, and a driving method thereof. The organic light emitting display controls a level of a gate signal, by outputting a gate high voltage after controlling a level of the gate high voltage, according to a level of a threshold voltage sensed from each pixel of a display panel.