Abstract:
A display device including a substrate in which pixel groups each composed of two or more pixels adjacent in a column direction are arranged; a circuit element layer in which driving transistors driving the pixels are arranged; electrodes placed on the circuit element layer, and electrically connected to the driving transistors through via holes, respectively; a bank surrounding each of the pixel groups, and placed to cover at least a part of an edge of the electrodes; and emission layers formed within areas surrounded by the bank, wherein the pixel groups are arranged in a zigzag shape with respect to a row direction.
Abstract:
A display device includes a substrate including an active area and a non-active area; an organic insulating layer disposed on the substrate and having a portion thereof protruding outward from the substrate; a plurality of alignment patterns disposed between the substrate and the organic insulating layer in the non-active area; and a plurality of alignment grooves disposed in a lower surface of the portion of the organic insulating layer, protruding outward from the substrate, thus easily detecting a position of an edge of the substrate from the plurality of alignment patterns disposed adjacent to the edge of the substrate.
Abstract:
A display device including a substrate in which pixel groups each composed of two or more pixels adjacent in a column direction are arranged; a circuit element layer in which driving transistors driving the pixels are arranged; electrodes placed on the circuit element layer, and electrically connected to the driving transistors through via holes, respectively; a bank surrounding each of the pixel groups, and placed to cover at least a part of an edge of the electrodes; and emission layers formed within areas surrounded by the bank, wherein the pixel groups are arranged in a zigzag shape with respect to a row direction.
Abstract:
Provided is an organic light-emitting display (OLED) device. The organic light-emitting display (OLED) device includes a substrate; a shielding pattern; a buffer layer covering the shielding pattern and including a first contact hole and a second contact hole; a thin film transistor electrically connected to the shielding pattern through the first contact hole; a conductive material located on the thin film transistor; an insulating film covering the conductive material and including a third contact; a first electrode located on the insulating film and electrically connected to the shielding pattern; a bank covering the first electrode and including an opening against the conductive material; and an organic light emitting layer located on the first electrode while corresponding to the opening.
Abstract:
The present disclosure relates to an organic light emitting diode display having high aperture ratio. The present disclosure suggests an organic light emitting diode display comprising: a substrate having a plurality of pixel area arrayed in a matrix manner; an anode electrode formed within the pixel area on the substrate; a first bank having an open area exposing most of the anode electrode and defining an emission area; a second bank exposing the open area exposed by the first bank and some upper surface of the first bank; an organic light emitting layer covering the some upper surface of the first bank by the second bank and the most of anode electrode exposed by the first bank; and a cathode electrode formed over the substrate having the organic light emitting layer.
Abstract:
A display device is provided, which prevents light leakage from occurring and allows an edge of a display panel not to be visible. The display device can include a glass substrate provided with a plurality of pixels, a polarizing film provided over the glass substrate, a side coating layer provided over a side of the glass substrate to fill a step difference between the glass substrate and the polarizing film, and a rear coating layer provided below the glass substrate.
Abstract:
The present disclosure provides an organic light-emitting display device having a plurality of pixels arranged along first and second directions that intersect each other. Each of the pixels includes: a transistor; at least one insulating layer on the transistor, and a pixel contact hole extends through the insulating layer and exposes part of the transistor; a first electrode on the at least one insulating layer and connected to the transistor via the pixel contact hole; and a filling layer on the first electrode and filling the pixel contact hole. A first bank has a plurality of first openings, and each of the first openings exposes at least one of the first electrodes. A second bank has a plurality of second openings, and each of the second openings exposes a plurality of the first electrodes arranged along the second direction.
Abstract:
Disclosed is an electroluminescent display device capable of overcoming a problem related with a resistance of a low level voltage line without any loss of an aperture ratio, wherein the electroluminescent display device may include a substrate, a first electrode provided on the substrate, a bank configured to cover an end of the first electrode and to define an emission area, an emission layer provided on the first electrode in the emission area defined by the bank, a second electrode provided on the emission layer and the bank, a conductive layer provided on the second electrode, and the low level voltage line provided on the substrate and electrically connected with the second electrode or the conductive layer.
Abstract:
Provided is an organic light-emitting display (OLED) device. The organic light-emitting display (OLED) device includes a substrate; a shielding pattern; a buffer layer covering the shielding pattern and including a first contact hole and a second contact hole; a thin film transistor electrically connected to the shielding pattern through the first contact hole; a conductive material located on the thin film transistor; an insulating film covering the conductive material and including a third contact; a first electrode located on the insulating film and electrically connected to the shielding pattern; a bank covering the first electrode and including an opening against the conductive material; and an organic light emitting layer located on the first electrode while corresponding to the opening.