Abstract:
An organic light emitting device comprises a first substrate; a thin film transistor layer provided on the first substrate; a light emitting diode layer provided on the thin film transistor layer; and a passivation layer provided on the light emitting diode layer, the passivation layer including a first inorganic insulating film and a second inorganic insulating film, wherein a content of H contained in the first inorganic insulating film is smaller than that of H contained in the second inorganic insulating film.
Abstract:
An organic light emitting device comprises a first substrate; a thin film transistor layer provided on the first substrate; a light emitting diode layer provided on the thin film transistor layer; and a passivation layer provided on the light emitting diode layer, the passivation layer including a first inorganic insulating film and a second inorganic insulating film, wherein a content of H contained in the first inorganic insulating film is smaller than that of H contained in the second inorganic insulating film.
Abstract:
A rollable OLED display device according to an embodiment of the present disclosure is provided. The rollable OLED display device includes a rollable OLED display panel and a rolling unit. The rollable OLED display panel includes a display area and a non-display area that extends from the display area and includes a rolling unit attachment area. The rolling unit is in operative contact with the rolling unit attachment area of the rollable OLED display panel. It is configured to rotate such that the rollable OLED display panel is in a rolled state and an unrolled state. The rolling unit is formed in a cylindrical shape, and the rolling unit attachment area is defined by an arc of the cylindrical shape having an angle of 355° or less.
Abstract:
A method of manufacturing an OLED device is discussed. The method can include forming a gate electrode on a substrate; forming a gate insulation film on the substrate provided with the gate electrode; forming a channel layer, a source electrode and a drain electrode on the substrate provided with the gate insulation film; forming an organic light emitting diode which includes a first electrode connected to the drain electrode, an organic emission layer formed on the first electrode, and a second electrode formed on the organic emission layer; forming a passivation layer, which has a hydrogen content below 10%, on the substrate provided with the organic light emitting diode using an organic silicon compound; and forming a sealing layer on the substrate provided with the passivation layer.