Abstract:
An organic light emitting diode display device includes a substrate having first, second, third and fourth subpixels; first, second and third color filter layers in the second, third and fourth subpixels, respectively, on the substrate; a first wavelength converting layer in the first subpixel on the substrate and second and third wavelength converting layers on the first and second color filter layers, respectively; and a light emitting diode in each of the first, second, third and fourth subpixels over the first, second and third wavelength converting.
Abstract:
A light extraction pattern is disposed in each hole of a first electrode, or a first electrode including round portions and pattern portions is disposed so that light trapped in an emission layer can be output uniformly. In this way, the light extraction efficiency can be effectively improved, and occurrence of a black area can be prevented.
Abstract:
A liquid crystal display device includes a first substrate having a thin film transistor (TFT) in each pixel region, a first inorganic protective film on the first substrate including the TFT, color filters on the first inorganic protective film in each pixel region excluding the TFT, a common electrode on the color filters, a second protective film over the entire first inorganic protective film including the common electrode, a pixel electrode on the second inorganic protective film with the pixel electrode connected to a drain electrode of the TFT exposed by selective removal of the first and second inorganic protective films, the pixel electrode forming a fringe field with the common electrode such that the second inorganic protective film is interposed between the pixel electrode and the common electrode, and a column spacer on the second inorganic protective film with the column spacer covering the TFT.
Abstract:
An electroluminescent display device includes a substrate; an overcoat layer disposed over the substrate; and a light-emitting diode disposed on the overcoat layer, comprising: a first electrode having a plurality of holes exposing a top surface of the overcoat layer, the holes having an inclined wall surface; a light-emitting layer disposed on the first electrode; and a second electrode disposed on the light-emitting layer.
Abstract:
An organic light emitting diode (OLED) lighting apparatus includes a substrate including a plurality of emission areas and a plurality of non-emission areas surrounding edges of the plurality of emission areas, an overcoat layer disposed on the substrate and having a first non-flat top surface in at least one of the emission areas and a second non-flat top surface in at least one of the non-emission area, an auxiliary electrode disposed on the second non-flat top surface and including a reflective material, a first electrode disposed on the first non-flat top surface in at least one of the emission areas and disposed on the auxiliary electrode in the non-emission areas, an organic emitting layer on the first electrode, and a second electrode on the organic emitting layer, wherein the auxiliary electrode and the first electrode are in electrical contact with each other.
Abstract:
An organic light emitting diode display device includes a substrate, an overcoating layer on the substrate and including a plurality of convex portions and a plurality of concave portions, a first electrode on the overcoating layer, a light emitting layer on the first electrode and including a first emitting material layer, and a second electrode on the light emitting layer, wherein the first emitting material layer in the plurality of convex portions is separated from the second electrode by a first distance, and the first emitting material layer in the plurality of concave portions is separated from the second electrode by a second distance different from the first distance.
Abstract:
An electroluminescent display device can include a substrate including a first emission area and a first non-emission area; a first color filter pattern on the substrate and in the first emission area; a first wall disposed in the first non-emission area and surrounding the first color filter pattern; an overcoat layer on the first wall and the first color filter pattern and including a first micro-lens structure having a non-flat surface in the first emission area; and a light emitting diode on the overcoat layer and in the first emission area.
Abstract:
An organic light emitting diode display device includes a substrate having a plurality of subpixels which each have an emission region and a non-emission region defined along an edge of the emission region. A reflective barrier is disposed to correspond to the non-emission region and includes a reflective side surface. An overcoat layer is disposed on an upper portion of the reflective barrier. A light emitting diode includes a first electrode, an organic light emitting layer, and a second electrode, which are sequentially disposed on the overcoat layer. The reflective side surface of the reflective barrier is inversely tapered such that a width thereof is decreased in a traveling direction of light emitted from the organic light emitting layer.