Abstract:
A display device that is capable of being manufactured through a simplified process and at reduced cost is disclosed. The display device is configured such that a plurality of grouped cathode electrodes and a plurality of grouped black matrices intersect each other in the state in which an encapsulation unit is disposed therebetween in order to form a touch sensor, so that a process of forming first and second touch electrodes is omitted and a separate adhesion process becomes unnecessary, whereby structural simplification is achieved while costs are reduced.
Abstract:
Provided are a display device and a method of manufacturing the same. A display device includes: a lower substrate, a first over-coat layer on the lower substrate, the first over-coat layer including a first contact hole, a thin film transistor between the lower substrate and the first over-coat layer, the thin film transistor including a drain electrode including an end portion overlapping the first contact hole, the end portion of the drain electrode including an under-cut region, a lower passivation layer between the thin film transistor and the first over-coat layer, the lower passivation layer partially exposing a side surface of the end portion of the drain electrode, and a light-emitting structure on the first over-coat layer, the light-emitting structure being electrically connected to the thin film transistor through the first contact hole.
Abstract:
Provided are a display device and a method of manufacturing the same. A display device includes: a lower substrate, a first over-coat layer on the lower substrate, the first over-coat layer including a first contact hole, a thin film transistor between the lower substrate and the first over-coat layer, the thin film transistor including a drain electrode including an end portion overlapping the first contact hole, the end portion of the drain electrode including an under-cut region, a lower passivation layer between the thin film transistor and the first over-coat layer, the lower passivation layer partially exposing a side surface of the end portion of the drain electrode, and a light-emitting structure on the first over-coat layer, the light-emitting structure being electrically connected to the thin film transistor through the first contact hole.
Abstract:
An organic light-emitting display device characterized by improved reliability is disclosed. The organic light-emitting display device is configured such that each of an organic encapsulation layer, which is disposed on a light-emitting element, and an upper inorganic encapsulation layer, which is disposed on the organic encapsulation layer, are divided into a plurality of parts. Even when cracks are formed in a subpixel due to an external impact or when external moisture or oxygen permeates into the subpixel, therefore, it is possible to prevent the cracks, the moisture, or the oxygen from diffusing to an adjacent subpixel, whereby the reliability and lifespan of the display device are improved.
Abstract:
An organic electro-luminescence device capable of reducing a resistance of a cathode electrode to enhance brightness uniformity at each location within the device is described. The organic electro-luminescence device includes a bank layer formed over a substrate, the bank layer including a first, second, and third portion. A first electrode is formed between the first and second portions of the bank layer. An auxiliary electrode is formed where at least a part of the auxiliary electrode is formed between the second and third portions of the bank layer. A voltage drop prevention pattern is formed on the auxiliary electrode. An organic material layer formed between the first and second portions of the bank layer. A second electrode formed on the organic material layer, where at least a portion of the second electrode is electrically coupled to the auxiliary electrode.
Abstract:
An organic light emitting display apparatus includes pixel areas, each pixel area having emission and non-emission areas; a first electrode corresponding to the emission area of each pixel area; a bus electrode corresponding to at least a portion of the non-emission areas; an adherent pattern on a portion of the bus electrode; a separation pattern covering a top portion of the bus electrode and having an inverted tapered shape cross section defining a crevice under the separation pattern and above the bus electrode; an organic layer on the first electrode and the separation pattern, and further formed on a remaining portion of the bus electrode except a portion corresponding to the crevice under the separation pattern, the organic layer having an emission layer; and a second electrode on the organic layer and disposed in the crevice, the second electrode electrically contacting the bus electrode via the crevice.
Abstract:
The organic light emitting display device includes a substrate, a thin film transistor formed on the substrate, a protective film formed to cover the thin film transistor, a color filter layer formed on the substrate exposed by removing a gate insulating layer of the thin film transistor and the protective film, an overcoat layer formed over the entire surface of the substrate to cover the color filter layer and the protective film, a drain contact hole exposing the thin film transistor by selectively removing the protective film and the overcoat layer, and a first electrode connected to the thin film transistor through the drain contact hole on the overcoat layer, a white organic light emitting layer formed on the first electrode, and a second electrode formed to cover the white organic light emitting layer.
Abstract:
The organic light emitting display device includes a substrate, a thin film transistor formed on the substrate, a protective film formed to cover the thin film transistor, a color filter layer formed on the substrate exposed by removing a gate insulating layer of the thin film transistor and the protective film, an overcoat layer formed over the entire surface of the substrate to cover the color filter layer and the protective film, a drain contact hole exposing the thin film transistor by selectively removing the protective film and the overcoat layer, and a first electrode connected to the thin film transistor through the drain contact hole on the overcoat layer, a white organic light emitting layer formed on the first electrode, and a second electrode formed to cover the white organic light emitting layer.
Abstract:
A display device that is capable of being manufactured through a simplified process and at reduced cost is disclosed. The display device is configured such that a plurality of grouped cathode electrodes and a plurality of grouped black matrices intersect each other in the state in which an encapsulation unit is disposed therebetween in order to form a touch sensor, so that a process of forming first and second touch electrodes is omitted and a separate adhesion process becomes unnecessary, whereby structural simplification is achieved while costs are reduced.
Abstract:
A display device that is capable of being manufactured through a simplified process and at reduced cost is disclosed. The display device is configured such that a plurality of grouped cathode electrodes and a plurality of grouped black matrices intersect each other in the state in which an encapsulation unit is disposed therebetween in order to form a touch sensor, so that a process of forming first and second touch electrodes is omitted and a separate adhesion process becomes unnecessary, whereby structural simplification is achieved while costs are reduced.