Abstract:
Provided are a display device and a method of manufacturing the same. A display device includes: a lower substrate, a first over-coat layer on the lower substrate, the first over-coat layer including a first contact hole, a thin film transistor between the lower substrate and the first over-coat layer, the thin film transistor including a drain electrode including an end portion overlapping the first contact hole, the end portion of the drain electrode including an under-cut region, a lower passivation layer between the thin film transistor and the first over-coat layer, the lower passivation layer partially exposing a side surface of the end portion of the drain electrode, and a light-emitting structure on the first over-coat layer, the light-emitting structure being electrically connected to the thin film transistor through the first contact hole.
Abstract:
An organic electro-luminescence device capable of reducing a resistance of a cathode electrode to enhance brightness uniformity at each location within the device is described. The organic electro-luminescence device includes a bank layer formed over a substrate, the bank layer including a first, second, and third portion. A first electrode is formed between the first and second portions of the bank layer. An auxiliary electrode is formed where at least a part of the auxiliary electrode is formed between the second and third portions of the bank layer. A voltage drop prevention pattern is formed on the auxiliary electrode. An organic material layer formed between the first and second portions of the bank layer. A second electrode formed on the organic material layer, where at least a portion of the second electrode is electrically coupled to the auxiliary electrode.
Abstract:
An organic electro-luminescence device capable of reducing a resistance of a cathode electrode to enhance brightness uniformity at each location within the device is described. The organic electro-luminescence device includes a bank layer formed over a substrate, the bank layer including a first, second, and third portion. A first electrode is formed between the first and second portions of the bank layer. An auxiliary electrode is formed where at least a part of the auxiliary electrode is formed between the second and third portions of the bank layer. A voltage drop prevention pattern is formed on the auxiliary electrode. An organic material layer formed between the first and second portions of the bank layer. A second electrode formed on the organic material layer, where at least a portion of the second electrode is electrically coupled to the auxiliary electrode.
Abstract:
Provided are a display device and a method of manufacturing the same. A display device includes: a lower substrate, a first over-coat layer on the lower substrate, the first over-coat layer including a first contact hole, a thin film transistor between the lower substrate and the first over-coat layer, the thin film transistor including a drain electrode including an end portion overlapping the first contact hole, the end portion of the drain electrode including an under-cut region, a lower passivation layer between the thin film transistor and the first over-coat layer, the lower passivation layer partially exposing a side surface of the end portion of the drain electrode, and a light-emitting structure on the first over-coat layer, the light-emitting structure being electrically connected to the thin film transistor through the first contact hole.