Abstract:
In an organic light emitting diode (OLED) display device and a method for fabricating the same, OLED pixels are patterned through a photolithography process, so a large area patterning can be performed and a fine pitch can be obtained, and an organic compound layer can be protected by forming a buffer layer of a metal oxide on an upper portion of the organic compound layer or patterning the organic compound layer by using a cathode as a mask, improving device efficiency. In addition, among red, green, and blue pixels, two pixels are patterned through a lift-off process and the other remaining one is deposited to be formed without patterning, to the process can be simplified and efficiency can be increased.
Abstract:
Discussed is a method of fabricating an organic light emitting diode display device capable of simplifying a manufacturing process by forming a photoresist pattern to cover a metal pattern to prevent a hole common layer and an electron common layer from being formed on the metal pattern.
Abstract:
An organic light emitting display device includes: an insulating layer; first electrodes on the insulating layer and spaced from each other by a gap; an organic light emitting layer on the first electrodes; and a second electrode on the organic light emitting layer, wherein the insulating layer includes a trench between the first electrodes, wherein the organic light emitting layer includes a first stack on the first electrodes, a charge generating layer on the first stack, and a second stack on the charge generating layer, wherein each of the first and second stacks includes a hole transporting layer, at least one emitting material layer and an electron transporting layer, and wherein the first stack has a discontinuous portion in the trench.
Abstract:
An organic light-emitting display device and a method of manufacturing the same are disclosed and these improve electrical connection between a cathode and an auxiliary electrode in order to reduce the resistance of the cathode that covers a plurality of sub-pixels, and may prevent lateral current leakage using the same structure.
Abstract:
An organic light emitting display device includes: an insulating layer; first electrodes on the insulating layer and spaced from each other by a gap; an organic light emitting layer on the first electrodes; and a second electrode on the organic light emitting layer, wherein the insulating layer includes a trench between the first electrodes, wherein the organic light emitting layer includes a first stack on the first electrodes, a charge generating layer on the first stack, and a second stack on the charge generating layer, wherein each of the first and second stacks includes a hole transporting layer, at least one emitting material layer and an electron transporting layer, and wherein the first stack has a discontinuous portion in the trench.
Abstract:
A method of fabricating an organic light emitting diode display device, which include forming a thin film transistor in a display region of a substrate, forming a metal pattern on the substrate in the display region, forming a first electrode on the substrate connected to the thin film transistor, forming a bank on the substrate to expose a portion of the first electrode and a portion of the metal pattern, forming a hole common layer, an organic light emitting layer, and an electron common layer sequentially over the entire surface of the substrate provided with the first electrode, the bank and the metal pattern, forming a photoresist pattern covering the electrode common layer and removing the hole common layer, the organic light emitting layer and the electron common layer using the photoresist pattern as a mask, removing the photoresist pattern, and forming a second electrode on the electron common layer connected to the metal pattern.
Abstract:
A display apparatus according to the present disclosure includes a substrate including a plurality of sub-pixels, a transistor disposed in each sub-pixel, a first planarization layer formed in the entire area of the substrate to cover the transistor, a light emitting device disposed in each sub-pixel, the light emitting device being electrically connected to the transistor through an contact hole formed in the first planarization layer; and a step prevention member formed in a predetermined region including the first contact hole in each sub-pixel.
Abstract:
An organic light-emitting display device and a method of manufacturing the same are disclosed and these improve electrical connection between a cathode and an auxiliary electrode in order to reduce the resistance of the cathode that covers a plurality of sub-pixels, and may prevent lateral current leakage using the same structure.
Abstract:
In an organic light emitting diode (OLED) display device and a method for fabricating the same, OLED pixels are patterned through a photolithography process, so a large area patterning can be performed and a fine pitch can be obtained, and an organic compound layer can be protected by forming a buffer layer of a metal oxide on an upper portion of the organic compound layer or patterning the organic compound layer by using a cathode as a mask, improving device efficiency. In addition, among red, green, and blue pixels, two pixels are patterned through a lift-off process and the other remaining one is deposited to be formed without patterning, the process can be simplified and efficiency can be increased.