Abstract:
A demultiplexer for sequentially outputting a data signal to a plurality of data lines disposed in a display panel can include a first switch connected to a first control node, the first switch being configured to electrically connect a first channel with a first data line among the plurality of data lines; a second switch connected to a second control node, the first switch being configured to electrically connect the first channel with a second data line among the plurality of data lines; a third switch connected to a third control node, the third switch being configured to electrically connect a second channel with a third data line among the plurality of data lines; and a fourth switch connected to a fourth control node, the fourth switch being configured to electrically connect the second channel with a fourth data line among the plurality of data lines, in which the first control node and the third control node are configured to receive a single first control signal, and be electrically disconnected from each other at a point in time, the second control node and the fourth control node are configured to receive a single second control signal, and be electrically disconnected from each other at a point in time, and the first control node and the third control node have different voltage conditions than the second control node and the fourth control node.
Abstract:
A demultiplexer for sequentially outputting a data signal to a plurality of data lines disposed in a display panel can include a first switch connected to a first control node, the first switch being configured to electrically connect a first channel with a first data line among the plurality of data lines; a second switch connected to a second control node, the first switch being configured to electrically connect the first channel with a second data line among the plurality of data lines; a third switch connected to a third control node, the third switch being configured to electrically connect a second channel with a third data line among the plurality of data lines; and a fourth switch connected to a fourth control node, the fourth switch being configured to electrically connect the second channel with a fourth data line among the plurality of data lines, in which the first control node and the third control node are configured to receive a single first control signal, and be electrically disconnected from each other at a point in time, the second control node and the fourth control node are configured to receive a single second control signal, and be electrically disconnected from each other at a point in time, and the first control node and the third control node have different voltage conditions than the second control node and the fourth control node.
Abstract:
A display apparatus comprises a demultiplexing circuit portion that sequentially supplies data signals supplied from a data driving circuit to at least two data lines, and the demultiplexing circuit portion of the display apparatus comprises a switching portion that sequentially supplies the data signals to the at least two data lines based on a voltage of a control line; a voltage controller that controls the voltage of the control line in response to a time-division control signal; and a voltage discharge portion that discharges the voltage of the control line in response to the time-division control signal.
Abstract:
The present invention discloses an organic light-emitting diode display device. More particularly, the present invention relates to the structure of an organic light-emitting diode display device for suppressing a vertical crosstalk phenomenon in the organic light-emitting diode display device having an internal compensation structure for threshold voltage variations in driving transistors. According to an embodiment of the present invention, a shield electrode may be formed using the same metal layer as that of scan lines or data lines, thereby providing an organic light-emitting diode display device in which the effect of coupling between the gate electrode of driving thin-film transistors and the data lines is minimized.
Abstract:
The organic light emitting diode (OLED) device includes a first substrate defined by a display area and a panel edge portion surrounding the display area, a thin film transistor, a first electrode connected to the thin film transistor, a bank formed on the first substrate, an organic light emitting layer formed on the display area of the first substrate, a second electrode formed on an entire surface of the first substrate having the organic light emitting layer, an anti-moisture permeation pattern formed on the second electrode on the bank located at the panel edge portion, a passivation layer formed on an entire surface of the first substrate and a second substrate attached to the first substrate.
Abstract:
A display device can include a first substrate having an upper surface and a lower surface, an active layer on the lower surface of the first substrate and including a channel part, a first connection part connected to a first side of the channel part and a second connection part connected to a second side of the channel part, a gate electrode under the active layer and overlapping the channel part, a first electrode connected to a first surface of the first connection part, a second electrode connected to a second surface of the first connection part, and a third electrode connected to the second connection part. Also, a second substrate is under the gate electrode, a liquid crystal layer is between the first and second substrates, and a backlight is under the second substrate.
Abstract:
A display apparatus includes first to third demultiplexer circuits respectively providing a data signal, supplied from a data driver, to three data lines. Each of the first to third demultiplexer circuits includes a switching unit providing the data signal to a corresponding data line of the three data lines on the basis of a voltage of a corresponding control line of first to third control lines, a voltage controller controlling the voltage of the corresponding control line in response to a corresponding time division control signal of first to third time division control signals and a corresponding auxiliary signal of first to third auxiliary signals which partially overlap the first to third time division control signals respectively, and a voltage discharger discharging the voltage of the corresponding control line.
Abstract:
Disclosed is a display apparatus for transferring an accurate sound. The display apparatus includes a display module including a display panel configured to display an image, a panel guide configured to support a rear periphery portion of the display panel, a rear cover configured to support the panel guide and to cover a rear surface of the display module, a first vibration generating module in a first portion of the rear cover, the first vibration generating module being configured to vibrate a center portion of the display panel, and a second vibration generating module in a second portion of the rear cover, the second vibration generating module being configured to vibrate a periphery portion of the display panel.
Abstract:
A display apparatus is disclosed, which comprises a demultiplexing circuit portion for sequentially supplying data signals supplied from a data driving circuit to at least two data lines, the demultiplexing circuit portion including a switching portion for sequentially supplying the data signals to at least two data lines based on a voltage of a control line, a voltage controller for controlling the voltage of the control line in response to a time-division control signal and an auxiliary signal partially overlapped with the time-division control signal, and a voltage discharge portion for discharging the voltage of the control line in response to the time-division control signal. Therefore, an off current capable of being transferred to an organic light emitting diode may be prevented from occurring, a bezel area may be minimized, and an image of high resolution of a display panel may be embodied.
Abstract:
The present invention discloses an organic light-emitting diode display device. More particularly, the present invention relates to the structure of an organic light-emitting diode display device for suppressing a vertical crosstalk phenomenon in the organic light-emitting diode display device having an internal compensation structure for threshold voltage variations in driving transistors. According to an embodiment of the present invention, a shield electrode may be formed using the same metal layer as that of scan lines or data lines, thereby providing an organic light-emitting diode display device in which the effect of coupling between the gate electrode of driving thin-film transistors and the data lines is minimized.