Abstract:
An organic light emitting display and a method of sensing deterioration of the same are discussed. The organic light emitting display includes a display panel including a plurality of display lines, each of the display lines in which a plurality of pixels are arranged, each of the pixels including a light emitting element and a driving element, a panel driver configured to supply a gate signal and a data voltage synchronized with the gate signal to the pixels of the display lines, a sensing unit configured to sense driving characteristics of the pixels, and a timing controller configured to control operation timings of the panel driver and the sensing unit, and overlappingly shift a sensing driving sequence for at least some display lines in accordance with a line sequential manner.
Abstract:
An organic light-emitting display can include a display panel including sensing lines connected to pixels; a current integrator configured to receive current from a pixel through a sensing line connected to a first input terminal, receive a reference voltage through a reference voltage line connected to a second input terminal, and swap a path through which the current applied through the first input terminal flows and a path through which the reference voltage applied through the second input terminal is supplied; a sampling part including a first sample and hold circuit for sampling a first output voltage of the current integrator and a second sample and hold circuit for sampling a second output voltage of the current integrator, subsequent to the first output voltage, which outputs the first and second output voltages sampled by the first and second sample and hold circuits simultaneously through a single output channel.
Abstract:
A four-primary-color organic light emitting display comprises: a display panel where a plurality of first-color pixels, second-color pixels, third-color pixels, and fourth-color pixels are disposed; and a data drive circuit that has a single, digital-to-analog converter to generate first- to fourth-color data voltages and to apply the first-color data voltage to the first-color pixels, the second-color data voltage to the second-color pixels, the third-color data voltage to the third-color pixels, and the fourth-color data voltage to the fourth-color pixels. Herein, the maximum grayscale voltages for the first- to fourth-color data voltages are adjusted to be different on a single gamma graph defined as the input grayscale versus output voltage.
Abstract:
An organic light emitting diode display is disclosed. The organic light emitting diode display includes a display panel including a plurality of pixels, a plurality of sensing units configured to integrate current information of the pixels through a plurality of sensing channels connected to sensing lines of the display panel and output a first sensing value, a reference sensing unit configured to integrate previously set reference current information and output a reference sensing value, a calculation block configured to calculate the first sensing value and the reference sensing value, remove a common noise component from the first sensing value, and output a second sensing value, and an analog-to-digital converter configured to convert the second sensing value into a digital sensing value.
Abstract:
The present disclosure relates to an electroluminescent display device and a driving method of the same. The electroluminescent display device comprises a display panel, including a plurality of data lines, a plurality of sensing lines, a plurality of gate lines, and pixels which are arranged in matrix at each intersection between those lines to form a plurality of display lines; a sensing circuit, for sensing a pixel current in the pixels, integrating the pixel current to obtain a sensing voltage, and generating a sensing data based on the sensing voltage during a sensing operation period; and a compensation unit for calculating a compensation value for electrical characteristics of the pixels based on the sensing data.
Abstract:
A display device comprises a display panel that displays an image and has a data line and a sensing line, a data driver that drives the display panel, and a power supply part that delivers a driving reference voltage through a wiring line connected to the data driver. The data driver supplies a data signal to the data line, supplies the driving reference voltage through the sensing line, senses the sensing line based on an internally generated sensing reference voltage, and integrates a sensing result.
Abstract:
A personal immersive display device and a driving method thereof are disclosed. The display device comprises a first display panel to which first content data is provided; a second display panel to which second content data is provided; a camera that receives data associated with positions of a user's left pupil and right pupil; and a data processor that processes the data associated with the position of the user's left pupil and right pupil to determine a right gaze point and a left gaze point, detects a first gaze area on the first display panel and a second gaze area on the second display panel based on the right gaze point and left gaze point, wherein the data processor reduces resolution or brightness of the first and second content data provided to areas outside the first gaze area and second gaze area
Abstract:
An organic light emitting diode display includes a display panel including a plurality of pixels, each pixel including an organic light emitting diode (OLED) and a driving thin film transistor (TFT) configured to control an amount of current flowing in the OLED depending on a difference between a data voltage and a reference voltage, a source driver integrated circuit (IC) configured to produce the data voltages corresponding to data of an input image and apply the data voltages to data lines connected to the pixels, an image analyzer configured to analyze the data of the input image and produce reference voltage control data, and a reference voltage regulator configured to produce the reference voltages varying depending on the input image based on the reference voltage control data and apply the reference voltages to reference lines connected to the pixels.