Abstract:
An apparatus and method for driving an image display device are disclosed. The disclosed driving apparatus and method achieve synchronous driving of driving integrated circuits for driving an image display panel, through internal generation of drive control signals, thereby preventing a degradation in picture quality caused by erroneous driving timing while achieving an enhancement in product reliability. The driving apparatus includes a display panel, which includes a plurality of pixel regions, to display an image, a plurality of data integrated circuits, which share at least one of synchronizing signals internally generated therefrom, generate gate and data control signals in accordance with the shared synchronizing signal, and drive data lines of the display panel, using the internally-generated data control signals, and a gate driver for driving gate lines of the display panel in accordance with the gate control signal generated from one of the plural data integrated circuits.
Abstract:
An organic light emitting diode display device includes: a reflective electrode and an auxiliary electrode; a bank layer on the reflective electrode and the auxiliary electrode, the bank layer including a first open portion and a second open portion exposing a portion of the reflective electrode and a portion of the auxiliary electrode, respectively; a separator on the auxiliary electrode, the separator disposed within the second open portion; a pixel electrode in contact with the portion of the reflective electrode exposed by the first open portion of the bank layer, the pixel electrode being disposed separated from the separator; an organic emission layer on the pixel electrode, the organic emission layer divided by the separator, the organic emission layer being disposed separated from the separator; and a common electrode on the organic emission layer, the common electrode connected to the auxiliary electrode.
Abstract:
An apparatus and method for driving an image display device are disclosed. The disclosed driving apparatus and method achieve synchronous driving of driving integrated circuits for driving an image display panel, through internal generation of drive control signals, thereby preventing a degradation in picture quality caused by erroneous driving timing while achieving an enhancement in product reliability. The driving apparatus includes a display panel, which includes a plurality of pixel regions, to display an image, a plurality of data integrated circuits, which share at least one of synchronizing signals internally generated therefrom, generate gate and data control signals in accordance with the shared synchronizing signal, and drive data lines of the display panel, using the internally-generated data control signals, and a gate driver for driving gate lines of the display panel in accordance with the gate control signal generated from one of the plural data integrated circuits.
Abstract:
The present disclosure relates to a touch display device capable of adaptively controlling a touch sensing period and a data writing period for each area according to whether touch has occurred. A timing controller in a touch display device time-divides each frame into a plurality of unit periods using a touch synchronization signal, time-divides each unit period into a data writing period in which one of a plurality of pixel blocks of a pixel array is scanned and a touch sensing period in which one of a plurality of touch blocks of a touch electrode array is scanned, receives touch coordinate information from an MCU, defines a panel as a touched area and an untouched area, and controls a first touch sensing period in which the touched area is scanned to increase to be longer than a second touch sensing period in which the untouched area is scanned.
Abstract:
A display device includes a panel displaying an image using image data and including a common electrode to which a common voltage is applied; a timing controller providing the image data to the panel and outputting a correction voltage corresponding to the image data; and a power supply unit generating a compensation voltage using a panel common voltage and the correction voltage and providing the compensation voltage to the panel, wherein the panel common voltage is a voltage measuring the common voltage applied to the panel.