Abstract:
A conductive trace design is described that minimizes the possibility of crack initiation and propagation in conductive traces during bending. The conductive trace design has a winding trace pattern that is more resistant to the formation of cracks at high stress points in the conductive traces. The conductive trace design includes a cap that helps ensure electrical connection of the conductive trace even though one or more cracks may begin to form in the conductive portion of the conductive trace.
Abstract:
A flexible display is disclosed. The flexible display including an oxide semiconductor thin film transistor on a plastic substrate includes a first buffer layer disposed on the plastic substrate, a second buffer layer disposed on the first buffer layer and formed of silicon oxide (SiOx), and an active layer disposed on the second buffer layer and formed of an oxide semiconductor. The first buffer layer includes a lower layer directly contacting the plastic substrate and formed of silicon nitride (SiNx) and an upper layer disposed on the lower layer and formed of silicon oxide (SiOx).
Abstract:
There is provided a flexible display having a new wire structure and a new insulating layer structure. A flexible display includes a flexible substrate having a first area and a second area. The second area is curved in a non-zero angle relative to the plane of the first area. The flexible display further includes a plurality of wires that extend over from the first area to the second area of the flexible substrate. Each of the wires is covered by an upper insulating pattern, which is separated from other upper insulating pattern. Each upper insulating pattern covering the wire has substantially the same trace pattern shape of the corresponding wire thereunder. Accordingly, by adopting the above-described wire structure and upper insulating layer structure, crack generation and propagation in the wires and the insulating layers from bending of the flexible display can be minimized.
Abstract:
There is provided a flexible display having a new wire structure and a new insulating layer structure. A flexible display includes a flexible substrate having a first area and a second area. The second area is curved in a non-zero angle relative to the plane of the first area. The flexible display further includes a plurality of wires that extend over from the first area to the second area of the flexible substrate. Each of the wires is covered by an upper insulating pattern, which is separated from other upper insulating pattern. Each upper insulating pattern covering the wire has substantially the same trace pattern shape of the corresponding wire thereunder. Accordingly, by adopting the above-described wire structure and upper insulating layer structure, crack generation and propagation in the wires and the insulating layers from bending of the flexible display can be minimized.
Abstract:
Embodiments of the present disclosure can significantly reduce the non-display area of a flexible OLED display, which would otherwise be covered by a cosmetic trim such as a bezel or an opaque. As such, an electronic device with a display having minimized border area can be provided. This makes it possible to reduce the overall size of the electronic device without sacrificing the size of the display therein. Such a reduction in size of the bezel was achieved by bending the flexible substrate near its edge using an insert member.
Abstract:
A conductive trace design is described that minimizes the possibility of crack initiation and propagation in conductive traces during bending. The conductive trace design has a winding trace pattern that is more resistant to the formation of cracks at high stress points in the conductive traces. The conductive trace design includes a cap that helps ensure electrical connection of the conductive trace even though one or more cracks may begin to form in the conductive portion of the conductive trace.
Abstract:
There is provided a flexible display having a new wire structure and a new insulating layer structure. A flexible display includes a flexible substrate having a first area and a second area. The second area is curved in a non-zero angle relative to the plane of the first area. The flexible display further includes a plurality of wires that extend over from the first area to the second area of the flexible substrate. Each of the wires is covered by an upper insulating pattern, which is separated from other upper insulating pattern. Each upper insulating pattern covering the wire has substantially the same trace pattern shape of the corresponding wire thereunder. Accordingly, by adopting the above-described wire structure and upper insulating layer structure, crack generation and propagation in the wires and the insulating layers from bending of the flexible display can be minimized.
Abstract:
Embodiments of the present disclosure can significantly reduce the non-display area of a flexible OLED display, which would otherwise be covered by a cosmetic trim such as a bezel or an opaque. As such, an electronic device with a display having minimized border area can be provided. This makes it possible to reduce the overall size of the electronic device without sacrificing the size of the display therein. Such a reduction in size of the bezel was achieved by bending the flexible substrate near its edge using an insert member.