Abstract:
A display device includes: a display panel in which a plurality of data lines and a plurality of gate lines intersect in a matrix form and pixels are formed at intersecting points thereof; a data drive unit connected to the plurality of data lines and configured to output a black data voltage corresponding to a gradation level of 0 and expressing the black data voltage as a third voltage through the data lines, the third voltage greater than a first voltage, which is a minimum output value, and less than or equal to a second voltage corresponding to a gradation level of 0 when linearly extending data voltages of two or more low gradation levels; a gamma voltage supply unit outputting a gamma voltage for each gradation level to the data drive unit; and a timing controller generating a control signal to control driving of the display panel.
Abstract:
An organic light emitting device and a method of fabricating the same includes a first substrate; a thin film transistor (TFT) on the first substrate; a planarization layer on the TFT; an organic light emitting diode (OLED) on the planarization layer; a passivation layer on the OLED; a second substrate on the passivation; and a hydrogen capturing material between the first and the second substrates to prevent oxidation of materials forming the TFT.
Abstract:
An organic light emitting device and a method of fabricating the same includes a first substrate; a thin film transistor (TFT) on the first substrate; a planarization layer on the TFT; an organic light emitting diode (OLED) on the planarization layer; a passivation layer on the OLED; a second substrate on the passivation; and a hydrogen capturing material between the first and the second substrates to prevent oxidation of materials forming the TFT.
Abstract:
An organic light emitting display device includes a plurality of pixels defined on a substrate. Each of the plurality of pixels has a plurality of sub-pixels, and each of the plurality of sub-pixels has a light emitting area and a driving area. Widths in a first direction of the driving areas of the plurality of sub-pixels are identical to each other. A size of a light emitting area of a first sub-pixel of the plurality of sub-pixels is greater than a size of a light emitting area of a second sub-pixel of the plurality of sub-pixels.
Abstract:
An organic light emitting display device includes a plurality of pixels defined on a substrate. Each of the plurality of pixels has a plurality of sub-pixels, and each of the plurality of sub-pixels has a light emitting area and a driving area. Widths in a first direction of the driving areas of the plurality of sub-pixels are identical to each other. A size of a light emitting area of a first sub-pixel of the plurality of sub-pixels is greater than a size of a light emitting area of a second sub-pixel of the plurality of sub-pixels.
Abstract:
An organic light emitting display device includes a plurality of pixels defined on a substrate. Each of the plurality of pixels has a plurality of sub-pixels, and each of the plurality of sub-pixels has a light emitting area and a driving area. Widths in a first direction of the driving areas of the plurality of sub-pixels are identical to each other. A size of a light emitting area of a first sub-pixel of the plurality of sub-pixels is greater than a size of a light emitting area of a second sub-pixel of the plurality of sub-pixels.
Abstract:
An organic light-emitting diode display panel and an OLED display device have a sensing driving stabilizer that can increase accuracy in sensing and compensation by providing potential stability to a reference voltage line acting as a sensing line during the sensing driving.
Abstract:
An organic light-emitting diode display panel and an OLED display device have a sensing driving stabilizer that can increase accuracy in sensing and compensation by providing potential stability to a reference voltage line acting as a sensing line during the sensing driving.
Abstract:
A display device includes: a display panel in which a plurality of data lines and a plurality of gate lines intersect in a matrix form and pixels are formed at intersecting points thereof; a data drive unit connected to the plurality of data lines and configured to output a black data voltage corresponding to a gradation level of 0 and expressing the black data voltage as a third voltage through the data lines, the third voltage greater than a first voltage, which is a minimum output value, and less than or equal to a second voltage corresponding to a gradation level of 0 when linearly extending data voltages of two or more low gradation levels; a gamma voltage supply unit outputting a gamma voltage for each gradation level to the data drive unit; and a timing controller generating a control signal to control driving of the display panel.