Abstract:
An electronic device with a touch sensor comprises: a touch screen including touch sensors defined by Tx lines and Rx lines; a touch sensing circuit that supplies a drive signal to the Tx lines and senses a voltage change in the touch sensors to output sensing data; and a noise filtering unit that profiles the type of noise in the sensing data and compensates the sensing data so that the sensing data is near the maximum threshold or the minimum threshold, which is calculated based on a average value of the previous frame, or within the range between the maximum and minimum thresholds.
Abstract:
A touch driving circuit and a touch display device are disclosed. A group sensing control switch connected between lines connected to sensing units included in a touch driving circuit is disposed, thereby providing a structure in which one sensing unit can drive a touch electrode driven by another sensing unit. One sensing unit simultaneously drives two or more touch electrodes according to an operation state of a group sensing control switch to perform touch sensing, thereby providing a touch driving circuit and a touch display device capable of maintaining the resolution of touch sensing and improving touch sensitivity according to a driving environment.
Abstract:
A gate driver, a data driver, and a display apparatus including the gate driver and the data driver, may enable a resolution of each region of a display panel to be changed. The gate driver may include a gate resolution control signal output device outputting gate resolution control signals; a gate pulse generating device generating gate pulses to be output to gate lines; and a gate line selection device selecting gate lines, to which the gate pulses output from the gate pulse generating device are to be transferred, on the basis of the gate resolution control signals. The gate pulse generating device includes gate stages generating the gate pulses. The gate line selection device includes gate serial switches; and gate parallel switches. The gate serial switches respectively connect the gate stages to the gate lines, and each of the gate parallel switches connects two adjacent gate lines.
Abstract:
Provided is a method of compensating reference data, including calculating touch compensation data in the n-th frame period by compensating touch raw data in the n-th frame period using the reference data in the (n−1)-th frame period that is stored in a memory, detecting touch candidate coordinates by analyzing the touch compensation data in the n-th frame period, generating reference compensation data in the n-th frame period by setting up a labeling block from the touch raw data corresponding to the touch candidate coordinates and by compensating the touch raw data included in the labeling block, not the touch raw data not included, and generating reference data in the n-th frame period by calculating an average value of the reference compensation data in the n-th frame period, and the reference compensation data in the (n−k)-th to (n−1)-th frame periods, stored in the memory.
Abstract:
A touch driving circuit and a touch display device are disclosed. A group sensing control switch connected between lines connected to sensing units included in a touch driving circuit is disposed, thereby providing a structure in which one sensing unit can drive a touch electrode driven by another sensing unit. One sensing unit simultaneously drives two or more touch electrodes according to an operation state of a group sensing control switch to perform touch sensing, thereby providing a touch driving circuit and a touch display device capable of maintaining the resolution of touch sensing and improving touch sensitivity according to a driving environment.
Abstract:
The embodiments of the present disclosure relate to a display device, a test circuit, and a test method thereof. More specifically, a display device may include a silicon substrate having a plurality of gate lines, a plurality of data lines, a plurality of sensing lines, and a pixel array on which a plurality of subpixels are arranged; a test circuit arranged on the silicon substrate, the test circuit configured to select at least one line of the plurality of data lines or the plurality of sensing lines, to convert a signal transmitted through the selected line into a digital signal, and to output test data; and a test pad unit configured to output the test data to a circuit outside the silicon substrate.
Abstract:
An electronic device with a touch sensor comprises: a touch screen including touch sensors defined by Tx lines and Rx lines; a touch sensing circuit that supplies a drive signal to the Tx lines and senses a voltage change in the touch sensors to output sensing data; and a noise filtering unit that profiles the type of noise in the sensing data and compensates the sensing data so that the sensing data is near the maximum threshold or the minimum threshold, which is calculated based on a average value of the previous frame, or within the range between the maximum and minimum thresholds.
Abstract:
A touch driving circuit and a touch display device are disclosed. A group sensing control switch connected between lines connected to sensing units included in a touch driving circuit is disposed, thereby providing a structure in which one sensing unit can drive a touch electrode driven by another sensing unit. One sensing unit simultaneously drives two or more touch electrodes according to an operation state of a group sensing control switch to perform touch sensing, thereby providing a touch driving circuit and a touch display device capable of maintaining the resolution of touch sensing and improving touch sensitivity according to a driving environment.
Abstract:
A display panel sets a focus area per frame, based on focus area setting information and focus area reference line information received from the outside, control the number of gate lines simultaneously driven according to the focus area, and display a rendered image per focus area, thereby preventing the quality degradation of the image perceived by the user and increasing the frame rate of the display panel, and enhancing the quality of the virtual reality experience provided by the virtual reality device.
Abstract:
A method and a circuit for driving a touch sensor measuring noise and a display device using the same are disclosed. The method of driving the touch sensor includes connecting sensor lines of a plurality of touch sensors to a sensing unit during a noise measurement portion, and driving the sensing unit at previously selected noise measurement frequencies in a state where the sensor lines are connected to the sensing unit or applying a signal of the noise measurement frequencies to the sensor lines to measure a noise of the touch sensors at each of the noise measurement frequencies.