Abstract:
A method for transmitting ACK/NACK (Acknowledge/Negative ACK) information at a user equipment in a wireless communication system, and a user equipment therefore are discussed. The method according to one embodiment includes generating an ACK/NACK payload for a plurality of carriers, the ACK/NACK payload including a plurality of concatenated ACK/NACK sets. Each ACK/NACK set is associated with a respective one of the plurality of carriers and has one or more ACK/NACK bits. The method further includes transmitting the ACK/NACK payload through a PUCCH (Physical Uplink Control Channel) or PUSCH (Physical Uplink Shared Channel). The ACK/NACK payload includes an ACK/NACK bit for a semi-persistent scheduled downlink signal. The ACK/NACK bit for the semi-persistent scheduled downlink signal is positioned at an end of a corresponding ACK/NACK set, not an end of the ACK/NACK payload.
Abstract:
A method for transmitting ACK/NACK (Acknowledge/Negative ACK) information for two or more carriers at a user equipment in a wireless communication system which supports carrier aggregation. The method according to one embodiment includes generating an ACK/NACK payload including two or more ACK/NACK sets, wherein each ACK/NACK set is associated with a corresponding carrier and have one or more ACK/NACK bits; and transmitting the ACK/NACK payload through a PUCCH (Physical Uplink Control Channel) or PUSCH (Physical Uplink Shared Channel). A size of the ACK/NACK payload is given based on carrier configuration, the carrier configuration including a number of configured carriers and transmission modes for the configured carriers. The two or more ACK/NACK sets are concatenated in an order of carrier index.
Abstract:
A method for receiving ACK/NACK (Acknow1edge/Negative ACK) information at a base station in a wireless communication system, the method includes configuring a plurality of carriers for downlink signal transmission; transmitting downlink signals including a semi-persistent scheduled downlink signal through the plurality of carriers; and receiving an ACK/NACK payload for the plurality of carriers, the ACK/NACK payload including a plurality of concatenated ACK/NACK sets, wherein each ACK/NACK set is associated with a respective one of the plurality of carriers and has one or more ACK/NACK bits, wherein the ACK/NACK payload includes an ACK/NACK bit for the semi-persistent scheduled downlink signal, and the ACK/NACK bit for the semi-persistent scheduled downlink signal is positioned at an end of a corresponding ACK/NACK set.
Abstract:
Disclosed are a method and a device for transmitting uplink control information (UCI) by a terminal in a wireless communication system. The UCI transmission method comprises the steps of: generating an encoding information bit stream by performing channel coding for a UCI bit stream; generating complex modulation symbols by performing modulation for the generated encoding information bit stream; spreading the complex modulation symbols in block-wise on the basis of an orthogonal sequence; and transmitting the spread complex modulation symbols to a base station. The encoding information bit stream is generated by a channel coding for circularly repeating the UCI bit stream.
Abstract:
Disclosed are a method and a device for transmitting uplink control information (UCI) by a terminal in a wireless communication system. The UCI transmission method comprises the steps of: generating an encoding information bit stream by performing channel coding for a UCI bit stream; generating complex modulation symbols by performing modulation for the generated encoding information bit stream; spreading the complex modulation symbols in block-wise on the basis of an orthogonal sequence; and transmitting the spread complex modulation symbols to a base station. The encoding information bit stream is generated by a channel coding for circularly repeating the UCI bit stream.
Abstract:
Disclosed are a method and a device for transmitting uplink control information (UCI) by a terminal in a wireless communication system. The UCI transmission method comprises the steps of: generating an encoding information bit stream by performing channel coding for a UCI bit stream; generating complex modulation symbols by performing modulation for the generated encoding information bit stream; spreading the complex modulation symbols in block-wise on the basis of an orthogonal sequence; and transmitting the spread complex modulation symbols to a base station. The encoding information bit stream is generated by a channel coding for circularly repeating the UCI bit stream.