Abstract:
Disclosed is a light emitting device. More specifically, disclosed are an organic electroluminescent device display and a method for manufacturing the same. The organic electroluminescent device display includes a substrate, an organic electroluminescent device disposed on the substrate, a sealing cap for sealing the organic electroluminescent device, and a getter disposed inside the sealing cap, the getter comprising a graphene layer.
Abstract:
The present invention relates to graphene and, more particularly, to a method for manufacturing a graphene electromagnetic wave blocking plate capable of blocking electromagnetic waves by using graphene, and a microwave oven using same. The present invention includes: a step of forming a first graphene layer and a second graphene layer above and below a catalytic metal layer; a step of attaching a supporting substrate onto the second graphene layer; a step of forming a pattern on at least either one of the first graphene layer or the catalytic metal layer; and a step of removing the supporting substrate.
Abstract:
Disclosed is graphene. More particularly, disclosed are a method for manufacturing graphene to grow graphene with high quality and graphene manufactured by the same. The method includes preparing a thermal-expansion compensation substrate, forming a metal layer on the thermal-expansion compensation substrate, and forming graphene on the metal layer.
Abstract:
The present invention relates to graphene and, more particularly, to a method for manufacturing a graphene electromagnetic wave blocking plate capable of blocking electromagnetic waves by using graphene, and a microwave oven using same. The present invention includes: a step of forming a first graphene layer and a second graphene layer above and below a catalytic metal layer; a step of attaching a supporting substrate onto the second graphene layer; a step of forming a pattern on at least either one of the first graphene layer or the catalytic metal layer; and a step of removing the supporting substrate.
Abstract:
A graphene doped with different dopants and a method for preparing the same are disclosed. A method for preparing a multi-doped graphene includes: mixing a metal-based dopant and at least one organic-based dopant to prepare a doping solution; stacking a graphene layer on a substrate; and doping the graphene layer with the doping solution that includes the metal-based dopant and the at least one organic-based dopant. The method allows maintaining the transparency of the prepared graphene and minimizing the sheet resistance of the graphene while not damaging a substrate on which the graphene is stacked.
Abstract:
A method for manufacturing graphene using light capable of transferring and patterning graphene, and graphene manufactured using the method are disclosed. The method includes forming a graphene layer on a catalyst metal layer, attaching a support layer losing adhesion by light on the graphene layer, removing the catalyst metal layer, disposing a substrate on the graphene layer, and separating the support layer from the graphene layer by irradiating light to the support layer.