Rotary charge stripping film in charge stripping device of ion beam and charge stripping method of ion beam

    公开(公告)号:US11581105B2

    公开(公告)日:2023-02-14

    申请号:US16320340

    申请日:2017-07-27

    摘要: An object of the present invention is to provide a charge stripping film in a charge stripping device of an ion beam, which has high heat resistance and no toxicity, with which there is no risk of activation, with which an ion beam can be made multivalent even if the charge stripping film is thin, and which is resistant to high-energy beam radiation over an extended period of time. The present invention comprises a charge stripping film used in a device which strips a charge of an ion beam, wherein the charge stripping film is a rotary charge stripping film comprising a carbon film having a thermal conductivity of 20 W/mK or more in a film surface direction at 25° C., and a film thickness of the carbon film is more than 3 μm and less than 10 μm. The present invention also comprises a charge stripping film used in a device which strips a charge of an ion beam, wherein the charge stripping film is a rotary charge stripping film comprising a carbon film produced by a polymer annealing method, and a film thickness of the carbon film is more than 3 μm and less than 10 μm.

    Method for openly and continuously growing carbon nanomaterials

    公开(公告)号:US11473192B2

    公开(公告)日:2022-10-18

    申请号:US17285132

    申请日:2019-11-27

    摘要: The invention discloses equipment and preparation method for open and continuous growth of a carbon nanomaterial. The equipment comprises a metal foil tape feeding system, a CVD system and a collection system. The method includes continuously conveying a metal foil tape pretreated or not into the CVD system via the metal foil tape feeding system, depositing a required carbon nanomaterial on the surface of the metal foil tape by CVD, directly collecting by the collection system or directly post-treating the carbon nanomaterial by a post-treatment system, and even directly producing a end product of the carbon nanomaterial. All the systems in the invention are arranged in the open atmosphere rather than an air-isolated closed space. The invention can realize round-the-clock continuous operation to greatly improve the production efficiency of carbon nanomaterials.

    Tuned radio frequency (RF) resonant materials

    公开(公告)号:US11472233B2

    公开(公告)日:2022-10-18

    申请号:US16829385

    申请日:2020-03-25

    申请人: Lyten, Inc.

    摘要: This disclosure provides a tire formed of a body having multiple plies and a tread that surrounds the body. In some implementations, the plies and/or the tread include a resonator that generates a resonant signal in response to being activated by locally generated power or by an externally generated excitation signal. Multiple resonators formed of carbon-containing materials are distributed in the plies and/or tread to respond to changes to the tire by altering a characteristic of the resonant signal. Such alterations include frequency shifting of the resonant signal and/or attenuation of the resonant signal. The resonator can be configured to resonate at a first frequency when a structural characteristic of a respective ply or tread is greater than a level, and to resonate at a second frequency different than the first frequency when the structural characteristic of the respective ply or tread is not greater than the level.