Abstract:
A ferrite core according to an embodiment of the present invention includes a plurality of grains including Mn at 30 to 40 mol %, Zn at 5 to 15 mol %, and Fe at 50 to 60 mol %, and a plurality of grain boundaries disposed between the plurality of grains, wherein the plurality of grains and the plurality of grain boundaries include Co, Ni, SiO2, CaO, and Ta2O5, content of the Co and the Ni in the plurality of grains is two or more times higher than content of the Co and the Ni in the plurality of grain boundaries, content of the SiO2, the CaO, and the Ta2O5 in the plurality of grain boundaries is two or more times higher than content of the SiO2, the CaO, and the Ta2O5 in the plurality of grains, a magnetic permeability is 3000 or more, and a core loss is 800 or less.
Abstract:
An embodiment provides a magnetic core comprising a first powder and a second powder, wherein the hardness of the first powder is lower than that of the second powder, and the volume of the first powder is 40% to 60% with respect to the combined volume of the first powder and the second powder.
Abstract:
An inductor according to one embodiment of the present invention comprised: a magnetic core; and a coil wound around the magnetic core, wherein the magnetic core includes a plurality of stacked sub-magnetic cores, each sub-magnetic core includes a first magnetic body and a second magnetic body, the first magnetic body and the second magnetic core are different materials, the second magnetic body is arranged on a surface of the first magnetic body, each sub-magnetic core has a toroidal shape, and a permeability of the first magnetic body differs from a permeability of the second magnetic body.
Abstract:
An inductor includes a first magnetic body having a toroidal shape and having a ferrite; and a second magnetic body configured to be different from the first magnetic body and including a metal ribbon, wherein the second magnetic body includes an outer magnetic body disposed on an outer circumferential surface of the first magnetic body and an inner magnetic body disposed on an inner circumferential surface of the first magnetic body, and each of the outer magnetic body and inner magnetic body is wound in a plurality of layers in a circumferential direction of the first magnetic body.
Abstract:
Provided are a wireless charging board and a wireless charging device. The wireless charging board includes: a shielding layer; a coil pattern disposed on one surface of the shielding layer; and a magnetic pattern disposed in a space of a central part of the coil pattern.
Abstract:
According to an embodiment, provided is an electromagnetic wave shielding structure comprising: a shielding structure encompassing an electromagnetic wave generation source, and having a surface roughness on a surface thereof; and an electromagnetic wave shielding metal layer arranged on the surface of the shielding structure so as to encompass the shielding structure, wherein the upper side and the lateral side of the shielding structure have different surface roughness.
Abstract:
A receiving antenna of a wireless power receiving device wirelessly charging electrical power according to an embodiment of the present invention includes a substrate, a soft magnetic layer stacked on the substrate, including a soft magnetic material, and having gaps at predetermined intervals, and a coil stacked on the soft magnetic layer and receiving electromagnetic energy emitted from a wireless power transmission device.
Abstract:
Disclosed are a soft magnetic alloy and a wireless charging apparatus including the soft magnetic alloy. The soft magnetic alloy has a chemical formula expressed as Fe100-x-yCuxBy (wherein x ranges from 0.1 at % to 1.7 at % and y ranges from 2.3 at % to 9.6 at %). Without adding any expensive alloying element, only iron (Fe), copper (Cu), and boron (B) are used to obtain a nanocrystalline soft magnetic alloy that has a low coercive force and a high saturation magnetic flux density. The nanocrystalline soft magnetic alloy is applied to a wireless power transmitter and a wireless power receiver. Thereby, it is possible to make a shield member thin and increase a power transmission capacity. The soft magnetic alloy is easily processed into a flake form. The soft magnetic alloy processed in this way is applied to the shield member. Thereby, it is possible to increase permeability in a surface direction.
Abstract:
Since the magnetic sheet of the present invention has a much thinner thickness compared to a corresponding conventional magnetic layer and radiator coil material assembly and has no adhesive layer or air layer between the magnetic layer and the radiator, permeability required at the time of charging can be improved, a loss rate can be reduced and high charging efficiency can be obtained. Furthermore, since a band width and a gain rate can be improved, the magnetic sheet can be very usefully applied to wireless charging products which pursue slimming in design.
Abstract:
A MnBi-based magnet according to an embodiment includes crystal grains of (MnBi)aMb composition including a manganese element, a bismuth and a M element, wherein the M element is contained an amount of more than 0 at % and less than or equal to 10 at % when at % for all atoms of (MnBi)aMb is 100 at %, and the M element includes a chromium element, a germanium element, or a tellurium element.