-
公开(公告)号:US20240239728A1
公开(公告)日:2024-07-18
申请号:US18546459
申请日:2022-02-15
申请人: LINDE GMBH , BASF SE
发明人: Benedikt Keller , Peter Brehm , Clemens Prunner , Hendrik Reyneke , Martin Kamann , Gunter Garbe , Daniel Keck , Carl Schietekat , Axel Sperber , Alexander Weck
摘要: A method for producing ethylene and/or other olefins by steam cracking includes charging one or more crackers with a paraffin-containing feed and withdrawing a crude gas from the one or more crackers. The crude gas is subjected at least in part to a treatment comprising a crude gas compression and a thermal separation using a C2 refrigerant and a C3 refrigerant. A crude gas compressor is used for the crude gas compression, wherein the ethylene refrigerant is compressed using a C2 refrigerant compressor. The propylene refrigerant is compressed using a C3 refrigerant compressor. The crude gas compressor comprises two serial compressor trains. The compressor trains, the C2 refrigerant compressor and the C3 refrigerant compressor are each operated at least in part using electrical drives, which have at least partially identical performance features, are provided as structurally identical variable-speed drives, and are each fed via frequency converters.
-
公开(公告)号:US10421700B2
公开(公告)日:2019-09-24
申请号:US15561711
申请日:2016-03-23
发明人: Jan Pablo Josch , Ragavendra Prasad Balegedde Ramachandran , Christian Walsdorff , Regina Benfer , Anton Wellenhofer , Ulrike Wenning , Heinz Boelt , Hendrik Reyneke , Christine Toegel
摘要: The invention relates to a process for producing butadiene from n-butenes which comprises the steps of: A) providing a vaporous n-butenes-comprising input gas stream a1 by evaporating a liquid n-butenes-comprising stream a0; B) introducing the vaporous n-butenes-comprising input gas stream a1 and an at least oxygenous gas into at least one oxidative dehydrogenation zone and oxidatively dehydrogenating n-butenes to butadiene to obtain a product gas stream b comprising butadiene, unconverted n-butenes, steam, oxygen, low-boiling hydrocarbons, high-boiling secondary components, possibly carbon oxides and possibly inert gases, Ca) chilling the product gas stream b by contacting with a cooling medium comprising an organic solvent in at least one chilling zone, the cooling medium being at least partially recycled into the chilling zone, Cb) compressing the chilled product gas stream b which is possibly depleted of high-boiling secondary components in at least one compression stage to obtain at least one aqueous condensate stream c1 and a gas stream c2 comprising butadiene, n-butenes, steam, oxygen, low-boiling hydrocarbons, possibly carbon oxides and possibly inert gases, D) removing noncondensable and low-boiling gas constituents comprising oxygen, low-boiling hydrocarbons, possibly carbon oxides and possibly inert gases as gas stream d2 from the gas stream c2 by absorbing the C4 hydrocarbons comprising butadiene and n-butenes into an absorption medium to obtain a C4-hydrocarbons-laden absorption medium stream and the gas stream d2 and subsequently desorbing the C4 hydrocarbons from the laden absorption medium stream to obtain a C4 product gas stream d1, wherein at least some of the recycled cooling medium from step Ca) is brought into thermal contact with the liquid n-butenes-comprising stream a0 in one or more indirect heat exchangers and at least some of the liquid n-butenes-comprising stream a0 is evaporated by indirect heat transfer with the recycled cooling medium.
-
公开(公告)号:US10647639B2
公开(公告)日:2020-05-12
申请号:US16074454
申请日:2017-01-30
发明人: Jan Pablo Josch , Ragavendra Prasad Balegedde Ramachandran , Ulrike Wenning , Anton Wellenhofer , Christine Toegel , Hendrik Reyneke , Heinz Boelt
IPC分类号: C07C5/48 , C07C7/08 , C07C7/11 , C07C11/08 , C07C11/167
摘要: The invention relates to a method for producing butadiene from n-butenes having the steps: A) providing an n-butene-comprising feed gas stream a; B) feeding the n-butene-comprising feed gas stream a and an oxygen-comprising gas into at least one oxidative dehydrogenation zone and oxidatively dehydrogenating n-butenes to butadiene, wherein a product gas stream b comprising butadiene, unreacted n-butenes, steam, oxygen, low-boiling hydrocarbons, high-boiling minor components, optionally carbon oxides and optionally inert gases is obtained; Ca) cooling the product gas stream b by contacting it with a refrigerant and condensing at least a part of the high-boiling minor components; Cb) compressing the remaining product gas stream b in at least one compression step, wherein at least one aqueous condensate stream c1 and a gas stream c2 comprising butadiene, n-butenes, steam, oxygen, low-boiling hydrocarbons, optionally carbon oxides and optionally inert gases is obtained; Da) separating off non-condensable and low-boiling gas components comprising oxygen, low-boiling hydrocarbons, optionally carbon oxides and optionally inert gases as gas stream d2 from the gas stream c2 by absorbing the C4 hydrocarbons comprising butadiene and n-butenes in an absorption medium, wherein an absorption medium stream loaded with C4 hydrocarbons and the gas stream d2 are obtained, and Db) subsequently desorbing the C4 hydrocarbons from the loaded absorption medium stream in a desorption column, wherein a C4 product gas stream d1 is obtained, Dc) separating off the steam condensate from the absorption medium in a phase separator and vaporizing it in a steam generator and providing it again as stripping gas in the desorption column, wherein, the steam condensate before the vaporization in a steam generator, is subjected to a pretreatment in a further method step.
-
公开(公告)号:US10308569B2
公开(公告)日:2019-06-04
申请号:US15514077
申请日:2015-09-14
发明人: Jan Pablo Josch , Philipp Grüne , Regina Benfer , Maximilian Vicari , Andre Biegner , Gergor Bloch , Heinz Boelt , Hendrik Reyneke , Christine Toegel , Ulrike Wenning
摘要: The invention relates to a process for preparing butadiene from n-butenes, comprising the steps of: A) providing an input gas stream a comprising n-butenes, B) feeding the input gas stream a comprising n-butenes and a gas containing at least oxygen into at least one oxidative dehydrogenation zone and oxidatively dehydrogenating n-butenes to butadiene, giving a product gas stream b comprising butadiene, unconverted n-butenes, water vapor, oxygen, low-boiling hydrocarbons and high-boiling secondary components, with or without carbon oxides and with or without inert gases; Ca) cooling the product gas stream b by contacting with a cooling medium in at least one cooling zone, the cooling medium being at least partly recycled and having an aqueous phase and an organic phase, Cb) compressing the cooled product gas stream b which may have been depleted of high-boiling secondary components in at least one compression stage, giving at least one aqueous condensate stream c1 and one gas stream c2 comprising butadiene, n-butenes, water vapor, oxygen and low-boiling hydrocarbons, with or without carbon oxides and with or without inert gases; D) removing uncondensable and low-boiling gas constituents comprising oxygen and low-boiling hydrocarbons, with or without carbon oxides and with or without inert gases, as gas stream d2 from the gas stream c2 by absorbing the C4 hydrocarbons comprising butadiene and n-butenes in an absorbent, giving an absorbent stream laden with C4 hydrocarbons and the gas stream d2, and then desorbing the C4 hydrocarbons from the laden absorbent stream, giving a C4 product gas stream d1, E) separating the C4 product stream d1 by extractive distillation with a butadiene-selective solvent into a stream e1 comprising butadiene and the selective solvent and a stream e2 comprising n-butenes; F) distilling the stream e1 comprising butadiene and the selective solvent into a stream f1 consisting essentially of the selective solvent and a stream f2 comprising butadiene, wherein stage Cb) comprises at least two compression stages Cba) and at least two cooling stages Cbb) configured in the form of quench columns, the cooling in the cooling stages being effected by direct contacting with a biphasic cooling medium having an aqueous phase and an organic phase.
-
公开(公告)号:US09957208B2
公开(公告)日:2018-05-01
申请号:US15503189
申请日:2015-08-11
发明人: Philipp Grüne , Oliver Hammen , Rainer Eckrich , Jan Pablo Josch , Christian Walsdorff , Andre Biegner , Gregor Bloch , Heinz Boelt , Hendrik Reyneke , Christine Toegel , Ulrike Wenning
CPC分类号: C07C5/48 , C07C7/005 , C07C7/08 , C07C7/09 , C07C7/11 , C07C2523/887 , C07C11/167
摘要: The invention relates to a process for preparing butadiene from n-butenes, comprising the steps of: A) providing an input gas stream a comprising n-butenes, B) feeding the input gas stream a comprising n-butenes and a gas containing at least oxygen into at least one oxidative dehydrogenation zone and oxidatively dehydrogenating n-butenes to butadiene, giving a product gas stream b comprising butadiene, unconverted n-butenes, water vapor, oxygen, low-boiling hydrocarbons and high-boiling secondary components, with or without carbon oxides and with or without inert gases; Ca) cooling the product gas stream b by contacting with a cooling medium in at least one cooling zone, the cooling medium being at least partly recycled and having an aqueous phase and an organic phase of an organic solvent, wherein the organic solvent is selected from the group consisting of toluene, o-, m- and p-xylene, mesitylene, mono-, di- and triethylbenzene, mono-, di- and triisopropylbenzene and mixtures thereof, and the mass ratio of the aqueous phase to the organic phase in the cooling medium when it is fed into the cooling zones prior to the contacting with the product gas stream being from 0.015:1 to 10:1, Cb) compressing the cooled product gas stream b which may have been depleted of high-boiling secondary components in at least one compression stage, giving at least one aqueous condensate stream c1 and one gas stream c2 comprising butadiene, n-butenes, water vapor, oxygen and low-boiling hydrocarbons, with or without carbon oxides and with or without inert gases; D) removing uncondensable and low-boiling gas constituents comprising oxygen and low-boiling hydrocarbons, with or without carbon oxides and with or without inert gases, as gas stream d2 from the gas stream c2 by absorbing the C4 hydrocarbons comprising butadiene and n-butenes in an absorbent, giving an absorbent stream laden with C4 hydrocarbons and the gas stream d2, and then desorbing the C4 hydrocarbons from the laden absorbent stream, giving a C4 product gas stream d1, E) separating the C4 product stream d1 by extractive distillation with a butadiene-selective solvent into a stream e1 comprising butadiene and the selective solvent and a stream e2 comprising n-butenes; F) distilling the stream e1 comprising butadiene and the selective solvent into a stream f1 consisting essentially of the selective solvent and a stream f2 comprising butadiene.
-
公开(公告)号:US10370310B2
公开(公告)日:2019-08-06
申请号:US16069553
申请日:2017-01-11
发明人: Jan Pablo Josch , Georgios Karanikoulis , Oliver Hammen , Claudia Mossbacher , Ulrike Wenning , Anton Wellenhofer , Christine Toegel , Hendrik Reyneke
摘要: The invention relates to a method for producing butadiene from n-butenes having the steps: A) providing a feed gas stream a comprising n-butenes; B) feeding the feed gas stream a comprising the n-butenes and an oxygen-comprising gas into at least one oxidative dehydrogenation zone and oxidatively dehydrogenating n-butenes to butadiene, wherein a product gas stream b comprising butadiene, unreacted n-butenes, steam, oxygen, low-boiling hydrocarbons, high-boiling minor components, possibly carbon oxides and possibly inert gases is obtained; Ca) cooling the product gas stream b by contacting it with a refrigerant and condensing at least a part of the high-boiling minor components; Cb) compressing the remaining product gas stream b in at least one compression stage, wherein at least one aqueous condensate stream c1 and a gas stream c2 comprising butadiene, n-butenes, steam, oxygen, low-boiling hydrocarbons, possibly carbon oxides and possibly inert gases are obtained; Da) separating off non-condensable and low-boiling gas components comprising oxygen, low-boiling hydrocarbons, possibly carbon oxides and possibly inert gases as gas stream d2 from the gas stream c2 by absorbing the C4 hydrocarbon-comprising butadiene and n-butenes in an absorbent, wherein an absorbent stream loaded with C4 hydrocarbons and the gas stream d2 are obtained, and Db) subsequent desorption of the C4 hydrocarbons from the loaded absorbent stream in a desorption column, wherein a C4 product gas stream d1 is obtained, wherein a polymerization inhibitor is added in step Db) at the column head of the desorption column.
-
公开(公告)号:US10358399B2
公开(公告)日:2019-07-23
申请号:US15523862
申请日:2015-11-02
发明人: Philipp Grüne , Stephan Deublein , Christian Walsdorff , Jan Pablo Josch , Rainer Rahm , Hendrik Reyneke , Anton Wellenhofer , Ulrike Wenning , Christine Toegel , Heinz Boelt
摘要: A process for preparing butadiene from n-butenes, comprising the steps of: A) providing an input gas stream comprising n-butenes; B) feeding the input gas stream comprising n-butenes and a gas containing at least oxygen into at least one oxidative dehydrogenation zone and oxidatively dehydrogenating n-butenes to butadiene, giving a product gas stream; Ca) cooling the product gas stream by contacting with a circulating cooling medium in at least one cooling zone; Cb) compressing the cooled product gas stream in at least one compression stage, giving at least one aqueous condensate stream c1 and one gas stream c2; D) removing uncondensable and low-boiling gas constituents comprising oxygen and low-boiling hydrocarbons as gas stream d2 from the gas stream c2 by absorbing the C4 hydrocarbons in an absorbent, giving an absorbent stream laden with C4 hydrocarbons and the gas stream d2, and then desorbing the C4 hydrocarbons from the laden absorbent stream, giving a C4 product gas stream d1; E) separating the C4 product stream d1 by extractive distillation; F) distilling the stream e1 into a stream f1 consisting essentially of the selective solvent and a stream f2 comprising butadiene; G) removing a portion of the aqueous phase of the cooling medium which circulates in step Ca) as aqueous purge stream g; H) distillatively separating the aqueous purge stream g into a fraction h1 and a fraction h2 depleted of organic constituents.
-
-
-
-
-
-