Abstract:
A system and method for reducing the operational noise of a blunt trailing edge of a wind turbine blade is described. The system involves increasing the trailing edge solid angle at the blade trailing edge by providing a wedge element or projection adjacent the trailing edge of the blade, the wedge element acting to provide improved mixing of the suction side and pressure side flows at the blunt trailing edge, thereby reducing the strength of vortex shedding at the trailing edge and the associated operational noise.
Abstract:
A wind turbine blade is described having noise reduction features. The blade has a plurality of projecting serrations provided at the blade trailing edge to reduce the scattering noise produced during operation of the blade, wherein the serrations have a plurality of through-going apertures defined in the serration body. The apertures act to provide a pressure equalization effect at the serrations between the suction and pressure sides. This pressure equalization provides for improved noise reduction performance, as well as a reduction in mechanical stresses and strains which may be experienced by the serrations, increasing serration lifetime.
Abstract:
A system and method for reducing the operational noise of a blunt trailing edge of a wind turbine blade is described. The system involves increasing the trailing edge solid angle at the blade trailing edge by providing a wedge element or projection adjacent the trailing edge of the blade, the wedge element acting to provide improved mixing of the suction side and pressure side flows at the blunt trailing edge, thereby reducing the strength of vortex shedding at the trailing edge and the associated operational noise.
Abstract:
A wind turbine blade is described having noise reduction features. The blade has a plurality of projecting elements provided at the blade trailing edge to reduce the scattering noise produced during operation of the blade. The blade further comprises a fluid injection system which can inject a fluid into the turbulent airflow at the trailing edge of the blade, to absorb some of the turbulent kinetic energy at the trailing edge and accordingly further reduce the levels of output noise produced by the blade. In a further aspect, the fluid injection system may be adjustable to inject fluid in an upstream direction, i.e. against the oncoming airflow, in order to provide an increased absorption of turbulent kinetic energy from the incident airflow, and accordingly to provide improved noise-reduction characteristics.
Abstract:
A wind turbine blade is described wherein at least on planar member is provided on the blade surface, where the planar member is arranged such that it extends at an angle to the chord of the blade. The planar member acts to re-direct airflow over the blade, to improve wind turbine performance. The planar member may be a stall fence provided towards the blade root end, further acting to divert airflow towards the root end of the blade to prevent separation of attached airflow. Additionally or alternatively, the planar member may be a flow diverter provided towards the blade tip end, to increase airflow in the tip region for increased performance and/or to disrupt the formation of tip vortices.
Abstract:
A wind turbine blade is described wherein at least on planar member is provided on the blade surface, where the planar member is arranged such that it extends at an angle to the chord of the blade. The planar member acts to re-direct airflow over the blade, to improve wind turbine performance. The planar member may be a stall fence provided towards the blade root end, further acting to divert airflow towards the root end of the blade to prevent separation of attached airflow. Additionally or alternatively, the planar member may be a flow diverter provided towards the blade tip end, to increase airflow in the tip region for increased performance and/or to disrupt the formation of tip vortices.
Abstract:
A wind turbine blade is described having noise reduction features. The blade has a plurality of projecting serrations provided at the blade trailing edge to reduce the scattering noise produced during operation of the blade, wherein the serrations have a plurality of through-going apertures defined in the serration body. The apertures act to provide a pressure equalisation effect at the serrations between the suction and pressure sides. This pressure equalisation provides for improved noise reduction performance, as well as a reduction in mechanical stresses and strains which may be experienced by the serrations, increasing serration lifetime.