Abstract:
Various aspects of the instant disclosure are directed towards communicating symbols over a power line carrying alternating current, based upon frequency variations in the alternating current. In accordance with some embodiments, a line driver couples data-carrying symbols over the power line, via a waveform. Variations in the alternating current are monitored and used for defining data useful for providing steps of the waveform. The accessed data entries are used to drive a line driver for modulating alternating current on the power line to account for the variations.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for transmitting data. In one aspect, a method obtains a baseline data rate for transmissions from a node that are received over a channel of a power line communications system and a set of available modulation techniques for the node. The set of available modulation techniques can include at least two modulation techniques with which the node is configured to encode data that are transmitted over the channel. Using the set of available modulation techniques, a modulation technique that is capable of providing at least the baseline data rate with at least a threshold confidence for the node is selected. In turn, data is provided to the node specifying the selected modulation technique.
Abstract:
Aspects of the present disclosure are directed toward receiver devices and methods of using receiver devices. One such method can include converting, using an analog-to-digital converter (ADC), and an analog input signal from power distribution lines that carry power using alternating current (AC) to a digital form. This input digital signal can be an oversampled digital signal, where the digital signal is oversampled relative to downstream processing (e.g., FFT-based processing). A processing circuit(s) can then be used to decimate the input digital signal according to a decimation rate. A reference signal can be generated by the processing circuit that is responsive to the decimation rate. The processing circuit can also be used to detect a change in a phase difference between the AC and reference signal and to modify, in response to detecting a change in the phase difference, the decimation rate to counteract the detected change in the phase difference.
Abstract:
In one or more embodiments, a data processing apparatus is configured to receive data symbols transmitted from one or more endpoint devices. Each of the data symbols is transmitted in a respective temporal position assigned for communication by one of the plurality of endpoints. The data processing apparatus is configured to recover data from two or more transmission(s)/retransmission(s) (of the same data) that are received in error and have different temporal positions. The corresponding data symbols in error are phase-aligned per a common reference point and energy is accumulated therefrom. The data processing apparatus discerns correct data values from the accumulated energy.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for transmitting data. In one aspect, a method obtains a baseline data rate for transmissions from a node that are received over a channel of a power line communications system and a set of available modulation techniques for the node. The set of available modulation techniques can include at least two modulation techniques with which the node is configured to encode data that are transmitted over the channel. Using the set of available modulation techniques, a modulation technique that is capable of providing at least the baseline data rate with at least a threshold confidence for the node is selected. In turn, data is provided to the node specifying the selected modulation technique.
Abstract:
Aspects of the present disclosure are directed toward receiver devices and methods of using receiver devices. One such method can include converting, using an analog-to-digital converter (ADC), and an analog input signal from power distribution lines that carry power using alternating current (AC) to a digital form. This input digital signal can be an oversampled digital signal, where the digital signal is oversampled relative to downstream processing (e.g., FFT-based processing). A processing circuit(s) can then be used to decimate the input digital signal according to a decimation rate. A reference signal can be generated by the processing circuit that is responsive to the decimation rate. The processing circuit can also be used to detect a change in a phase difference between the AC and reference signal and to modify, in response to detecting a change in the phase difference, the decimation rate to counteract the detected change in the phase difference.
Abstract:
In one or more embodiments, a data processing apparatus is configured to receive data symbols transmitted from one or more endpoint devices. Each of the data symbols is transmitted in a respective temporal position assigned for communication by one of the plurality of endpoints. The data processing apparatus is configured to recover data from two or more transmission(s)/retransmission(s) (of the same data) that are received in error and have different temporal positions. The corresponding data symbols in error are phase-aligned per a common reference point and energy is accumulated therefrom. The data processing apparatus discerns correct data values from the accumulated energy.
Abstract:
Various aspects of the instant disclosure are directed towards communicating symbols over a power line carrying alternating current, based upon frequency variations in the alternating current. In accordance with some embodiments, a line driver couples data-carrying symbols over the power line, via a waveform. Variations in the alternating current are monitored and used for accessing a lookup table that stores data entries that define data useful for providing steps of the waveform. The accessed data entries are used to drive a line driver with stepped data, and therein modulating alternating current on the power line with the data-carrying symbols at a frequency that is tied to the frequency of the alternating current.