Abstract:
A method is disclosed for implementing and reporting network measurements between a source of probe packets and an element, such as a router. The invention exploits commonly implemented features on commercial elements. By exploiting these features, the expense of deploying special purpose measurement devices can be avoided. In one aspect of the invention, a plurality of probe packets is transmitted in a packet network with each of the probe packets having the same key and the same aggregation characteristic. A report is then received from an instructionless element regarding the plurality of probe packets, thereby enabling measurement of a parameter of the packet network.
Abstract:
A method is disclosed for implementing and reporting network measurements between a source of probe packets and an element, such as a router. The invention exploits commonly implemented features on commercial elements. By exploiting these features, the expense of deploying special purpose measurement devices can be avoided. In one aspect of the invention, a plurality of probe packets is transmitted in a packet network with each of the probe packets having the same key and the same aggregation characteristic. A report is then received from an instructionless element regarding the plurality of probe packets, thereby enabling measurement of a parameter of the packet network.
Abstract:
A signature-based traffic classification method maps traffic into preselected classes of service (CoS). By analyzing a known corpus of data that clearly belongs to identified ones of the preselected classes of service, in a training session the method develops statistics about a chosen set of traffic features. In an analysis session, relative to traffic of the network where QoS treatments are desired (target network), the method obtains statistical information relative to the same chosen set of features for values of one or more predetermined traffic attributes that are associated with connections that are analyzed in the analysis session, yielding a statistical features signature of each of the values of the one or more attributes. A classification process then establishes a mapping between values of the one or more predetermined traffic attributes and the preselected classes of service, leading to the establishment of QoS treatment rules.
Abstract:
A signature-based traffic classification method maps traffic into preselected classes of service (CoS). By analyzing a known corpus of data that clearly belongs to identified ones of the preselected classes of service, in a training session the method develops statistics about a chosen set of traffic features. In an analysis session, relative to traffic of the network where QoS treatments are desired (target network), the method obtains statistical information relative to the same chosen set of features for values of one or more predetermined traffic attributes that are associated with connections that are analyzed in the analysis session, yielding a statistical features signature of each of the values of the one or more attributes. A classification process then establishes a mapping between values of the one or more predetermined traffic attributes and the preselected classes of service, leading to the establishment of QoS treatment rules.
Abstract:
A signature-based traffic classification method maps traffic into preselected classes of service (CoS). By analyzing a known corpus of data that clearly belongs to identified ones of the preselected classes of service, in a training session the method develops statistics about a chosen set of traffic features. In an analysis session, relative to traffic of the network where QoS treatments are desired (target network), the method obtains statistical information relative to the same chosen set of features for values of one or more predetermined traffic attributes that are associated with connections that are analyzed in the analysis session, yielding a statistical features signature of each of the values of the one ore more attributes. A classification process then establishes a mapping between values of the one or more predetermined traffic attributes and the preselected classes of service, leading to the establishment of QoS treatment rules.
Abstract:
Statistical methods are used to observe packet flow arrival processes and to infer routing changes from those observations. Packet flow arrivals are monitored using NetFlow or another packet flow monitoring arrangement. Packet flow arrivals are quantified by counting arrivals per unit time, or by measuring an inter-arrival time between flows. When a change in packet flow arrivals is determined to be statistically significant, a change in network routing protocol is reported.
Abstract:
A packet loss estimation technique is disclosed that utilizes the sampled flow level statistics that are routinely collected in operational networks, thereby obviating the need for any new router features or measurement infrastructure. The technique is specifically designed to handle the challenges of sampled flow-level aggregation such as information loss resulting from packet sampling, and generally comprises: receiving a first record of sampled packets for a flow from a first network element; receiving a second record of sampled packets for the flow from a second network element communicating with the first network element; correlating sampled packets from the flow at the first network element and the second network element to a measurement interval; and estimating the packet loss using a count of the sampled packets correlated to the measurement interval.
Abstract:
Statistical methods are used to observe packet flow arrival processes and to infer routing changes from those observations. Packet flow arrivals are monitored using NetFlow or another packet flow monitoring arrangement. Packet flow arrivals are quantified by counting arrivals per unit time, or by measuring an inter-arrival time between flows. When a change in packet flow arrivals is determined to be statistically significant, a change in network routing protocol is reported.
Abstract:
A method and apparatus for providing performance measurements on network tunnels in packet networks are disclosed. For example, the method establishes two tunnels between a first measurement host and a first router, and establishes a tunnel between the first router and a second measurement host. The method also establishes a multicast group having a plurality of members, and sends one or more packets addressed to the multicast group from the first measurement host. The method measures the frequencies of directly and/or indirectly received responses from the plurality of members of the multicast group, and provides a plurality of estimated values for a plurality of packet transmission rates from measurement of the frequencies for one or more of said tunnels.
Abstract:
A system and method to use network flow records to generate information about changes in network routing and to understand the impact of these changes on network traffic. The inferences made can be determinative, if sufficient information is available. If sufficient information is not available to make determinative inferences, inferences may be made that narrow the range of possible changes that may have occurred to network traffic and the underlying network.