摘要:
Ophthalmic lens molds made from one or more thermoplastic polymer having a low level of UV light transmittance (UV % T) ophthalmic lenses including silicone hydrogel contact lenses molded using these thermoplastic polymer having low UV % T, and methods of manufacturing ophthalmic lenses by cast molding a polymerizable composition in mold members formed of these thermoplastic polymers having low UV % T and curing the polymerizable composition using UV light are described.
摘要:
Ophthalmic lens molds made from one or more thermoplastic polymers with average polarities from about 1% to about 7%, ophthalmic lenses including silicone hydrogel contact lenses molded using these less polar thermoplastic polymers, and related methods are described. When the molds are used to cast mold silicone hydrogel contact lenses, the resulting polymerized lens bodies have ophthalmically acceptably wettable surfaces.
摘要:
Methods of manufacturing contact lenses using ophthalmic lens molds having a molding surface comprising a thermoplastic polymer, the molding surface having a percent polarity from 3% to 20% and a surface energy from about 25 mN/m to about 40 mN/m to cast mold a polymerizable composition having a surface tension from about 20 mN/m to about 25 mN/m, wherein a surface energy differential of the surface tension of the polymerizable composition less the surface energy of the molding surface less than or equal to zero (0); and silicone hydrogel contact lens bodies so manufactured are described.
摘要:
Ophthalmic lens molds made from one or more thermoplastic polymers with average polarities from about 1% to about 7%, ophthalmic lenses including silicone hydrogel contact lenses molded using these less polar thermoplastic polymers, and related methods are described. When the molds are used to cast mold silicone hydrogel contact lenses, the resulting polymerized lens bodies have ophthalmically acceptably wettable surfaces.
摘要:
Ophthalmic lens molds made from one or more thermoplastic polymer having a low level of UV light transmittance (UV % T) ophthalmic lenses including silicone hydrogel contact lenses molded using these thermoplastic polymer having low UV % T, and methods of manufacturing ophthalmic lenses by cast molding a polymerizable composition in mold members formed of these thermoplastic polymers having low UV % T and curing the polymerizable composition using UV light are described.
摘要:
Methods of manufacturing contact lenses using ophthalmic lens molds having a molding surface comprising a thermoplastic polymer, the molding surface having a percent polarity from 3% to 20% and a surface energy from about 25 mN/m to about 40 mN/m to cast mold a polymerizable composition having a surface tension from about 20 mN/m to about 25 mN/m, wherein a surface energy differential of the surface tension of the polymerizable composition less the surface energy of the molding surface less than or equal to zero (0); and silicone hydrogel contact lens bodies so manufactured are described.
摘要:
Systems and methods for producing silicone hydrogel contact lenses are described. Certain of the present systems include a contact lens mold forming station, a station for filling a contact lens mold section with a lens precursor composition and for placing a second mold section on the filled mold section to form a contact lens mold assembly, a curing station for forming a contact lens, a mold assembly separation station, and an extraction/hydration station. Certain of the present methods include forming a plurality of mold sections, placing a lens precursor composition on a surface of a first mold section, placing a second mold section on the first mold section, polymerizing the lens precursor composition, separating the first and second mold sections, removing the silicone hydrogel contact lens from one of the mold sections, extracting extractable components from the contact lens, and hydrating the contact lens.
摘要:
Systems and methods for producing silicone hydrogel contact lenses are described. Certain of the present systems include a contact lens mold forming station, a station for filling a contact lens mold section with a lens precursor composition and for placing a second mold section on the filled mold section to form a contact lens mold assembly, a curing station for forming a contact lens, a mold assembly separation station, and an extraction/hydration station. Certain of the present methods include forming a plurality of mold sections, placing a lens precursor composition on a surface of a first mold section, placing a second mold section on the first mold section, polymerizing the lens precursor composition, separating the first and second mold sections, removing the silicone hydrogel contact lens from one of the mold sections, extracting extractable components from the contact lens, and hydrating the contact lens.
摘要:
Systems and methods for producing silicone hydrogel contact lenses are described. Certain of the present systems include a contact lens mold forming station, a station for filling a contact lens mold section with a lens precursor composition and for placing a second mold section on the filled mold section to form a contact lens mold assembly, a curing station for forming a contact lens, a mold assembly separation station, and an extraction/hydration station. Certain of the present methods include forming a plurality of mold sections, placing a lens precursor composition on a surface of a first mold section, placing a second mold section on the first mold section, polymerizing the lens precursor composition, separating the first and second mold sections, removing the silicone hydrogel contact lens from one of the mold sections, extracting extractable components from the contact lens, and hydrating the contact lens.
摘要:
Methods for producing contact lenses from a polymerizable composition are provided. The methods generally include providing a carrier carrying a plurality of molds each of which contains a polymerizable composition. A chamber is provided which contains a light source providing light to the chamber effective to facilitate polymerization of the polymerizable composition. The molds in the carrier are exposed to the light in the chamber. During this exposing, the light source is monitored, for example, using digital addressable lighting interface (DALI) technology.