摘要:
An exemplary resonator fiber optic gyroscope comprises a resonator having an optical fiber loop; a light source configured to generate a light beam; and an intensity modulation circuit coupled between the light source and the resonator. The intensity modulation circuit is configured to modulate the intensity of the light beam from the light source to output an intensity modulated signal to the resonator. The intensity modulation circuit is configured to produce the intensity modulated signal such that harmonics of the intensity modulated signal which overlap a primary wave of a counter-propagating light beam in the resonator have an amplitude below a predetermined threshold. Amplitudes below the predetermined threshold are negligible.
摘要:
Methods and apparatus are provided for attenuating rotation rate errors in a resonator gyro. The gyro includes a ring resonator having a hollow core optical fiber coil and optical elements that are selected and/or oriented to reduce stray light that may be present in input light beams introduced to the ring resonator. The resonator has a predetermined mode. One of the optical elements partially transmits a portion of the input light beam to a first end of the fiber coil while partially transmitting a portion of the input light beam to a filter. Light having the predetermined mode is accepted into the first end of the fiber coil, and the filter accepts light of the input light beam having a corresponding mode. Transmission components of the circulating light beams indicates resonance peaks of the counter-propagating directions of the ring resonator.
摘要:
One embodiment is directed towards a stabilized laser including a laser to produce light at a frequency and a resonator coupled to the laser such that the light from the laser circulates therethrough. The laser also includes Pound-Drever-Hall (PDH) feedback electronics configured to adjust the frequency of the light from the laser to reduce phase noise in response to light sensed at the reflection port of the resonator and transmission port feedback electronics configured to adjust the frequency of the light from the laser toward resonance of the resonator at the transmission port in response to the light sensed at the transmission port of the resonator, wherein the transmission port feedback electronics adjust the frequency at a rate at least ten times slower than the PDH feedback electronics.
摘要:
An optical-fiber filter is provided. The optical-fiber filter includes an optical fiber having a first end-face and an opposing second end-face. The first end-face and the second end-face set a fiber length. The first end-face and the second end-face are coated with reflective coatings. When an optical beam emitted from a laser is coupled into one of the first end-face or the second end-face, an optical beam output from the opposing end-face has a narrow linewidth and low frequency noise fluctuations.
摘要:
An optical-fiber filter is provided. The optical-fiber filter includes an optical fiber having a first end-face and an opposing second end-face. The first end-face and the second end-face set a fiber length. The first end-face and the second end-face are coated with reflective coatings. When an optical beam emitted from a laser is coupled into one of the first end-face or the second end-face, an optical beam output from the opposing end-face has a narrow linewidth and low frequency noise fluctuations.
摘要:
A resonator fiber optic gyroscope includes a sensing resonator having a first resonance frequency for a first laser beam propagation direction and a second resonance frequency for a second laser beam propagation direction; an intensity modulator coupled to an output of the sensing resonator and configured to modulate the intensity of a signal output from the sensing resonator, wherein the intensity modulator modulates the output signal at an intensity modulation frequency; and resonance tracking electronics coupled to an output of the intensity modulator and configured to demodulate the intensity modulated signal output from the intensity modulator at a resonance tracking modulation frequency to produce a first demodulated signal; the resonance tracking electronics further configured to demodulate the first demodulated signal at the intensity modulation frequency, wherein the intensity modulation frequency is different from the resonance tracking modulation frequency.
摘要:
One embodiment is directed to a resonator fiber optic gyroscope (RFOG). The optical fiber resonator includes an optical fiber, one or more optical filters that suppresses the noise light in the resonator, one or more variable optical attenuators (VOAs) that can adjust the loss of the resonator with fast response, and one or more optical gain elements that provide amplification of light to offset part of the losses of the resonator. The RFOG also includes one or more pump lasers to produce one or more pump beams for the gain elements in the resonator and control electronics configured to control the one or more pump lasers and the one or more variable optical attenuators, such that the round-trip loss of the resonator is a substantially constant, positive value.
摘要:
One embodiment is directed to a resonator fiber optic gyroscope (RFOG). The optical fiber resonator includes an optical fiber, one or more optical filters that suppresses the noise light in the resonator, one or more variable optical attenuators (VOAs) that can adjust the loss of the resonator with fast response, and one or more optical gain elements that provide amplification of light to offset part of the losses of the resonator. The RFOG also includes one or more pump lasers to produce one or more pump beams for the gain elements in the resonator and control electronics configured to control the one or more pump lasers and the one or more variable optical attenuators, such that the round-trip loss of the resonator is a substantially constant, positive value.
摘要:
A low-noise resonator fiber-optic gyroscope is provided. The low-noise resonator fiber-optic gyroscope includes at least one laser to output a reference optical beam, a first-optical-beam frequency controller to modulate the first optical beam at a first-modulation frequency, a second-optical-beam frequency controller to modulate the second optical beam at a second-modulation frequency to form a second-frequency-modulated optical beam, a fiber resonator having a counter-clockwise-input end configured to input the first-frequency-modulated optical beam and the clockwise-input end configured to input the second-frequency-modulated optical beam; a first-frequency demodulator to demodulate an optical beam output from the clockwise-input end of the fiber resonator; and a second-frequency demodulator to demodulate an optical beam output from the counter-clockwise-input end of the fiber resonator. The first-modulation frequency and the second-modulation frequency are adjusted so that sideband noise spectrum centered on the first and second modulation frequencies are from each other.
摘要:
A low-noise resonator fiber-optic gyroscope is provided. The low-noise resonator fiber-optic gyroscope includes at least one laser to output a reference optical beam, a first-optical-beam frequency controller to modulate the first optical beam at a first-modulation frequency, a second-optical-beam frequency controller to modulate the second optical beam at a second-modulation frequency to form a second-frequency-modulated optical beam, a fiber resonator having a counter-clockwise-input end configured to input the first-frequency-modulated optical beam and the clockwise-input end configured to input the second-frequency-modulated optical beam; a first-frequency demodulator to demodulate an optical beam output from the clockwise-input end of the fiber resonator; and a second-frequency demodulator to demodulate an optical beam output from the counter-clockwise-input end of the fiber resonator. The first-modulation frequency and the second-modulation frequency are adjusted so that sideband noise spectrum centered on the first and second modulation frequencies are from each other.