摘要:
A modulated reflectance measurement system includes three monochromatic diode-based lasers. Each laser can operate as a probe beam or as a pump beam source. The laser outputs are redirected using a series of mirrors and beam splitters to reach an objective lens. The objective lens focuses the laser outputs on a sample. Reflected energy returns through objective and is redirected by a beam splitter to a detector. A lock-in amplifier converts the output of the detector to produce quadrature (Q) and in-phase (I) signals for analysis. A Processor uses the Q and/or I signals to analyze the sample. By changing the number of lasers used as pump or probe beam sources, the measurement system can be optimized to measure a range of different samples types.
摘要:
A modulated reflectance measurement system includes three monochromatic diode-based lasers. Each laser can operate as a probe beam or as a pump beam source. The laser outputs are redirected using a series of mirrors and beam splitters to reach an objective lens. The objective lens focuses the laser outputs on a sample. Reflected energy returns through objective and is redirected by a beam splitter to a detector. A lock-in amplifier converts the output of the detector to produce quadrature (Q) and in-phase (I) signals for analysis. A Processor uses the Q and/or I signals to analyze the sample. By changing the number of lasers used as pump or probe beam sources, the measurement system can be optimized to measure a range of different samples types.
摘要:
A modulated reflectance measurement system includes three monochromatic diode-based lasers. Each laser can operate as a probe beam or as a pump beam source. The laser outputs are redirected using a series of mirrors and beam splitters to reach an objective lens. The objective lens focuses the laser outputs on a sample. Reflected energy returns through objective and is redirected by a beam splitter to a detector. A lock-in amplifier converts the output of the detector to produce quadrature (Q) and in-phase (I) signals for analysis. A Processor uses the Q and/or I signals to analyze the sample. By changing the number of lasers used as pump or probe beam sources, the measurement system can be optimized to measure a range of different samples types.
摘要:
A modulated reflectance measurement system includes three monochromatic diode-based lasers. Each laser can operate as a probe beam or as a pump beam source. The laser outputs are redirected using a series of mirrors and beam splitters to reach an objective lens. The objective lens focuses the laser outputs on a sample. Reflected energy returns through objective and is redirected by a beam splitter to a detector. A lock-in amplifier converts the output of the detector to produce quadrature (Q) and in-phase (I) signals for analysis. A Processor uses the Q and/or I signals to analyze the sample. By changing the number of lasers used as pump or probe beam sources, the measurement system can be optimized to measure a range of different samples types.
摘要:
A modulated reflectance measurement system includes three monochromatic diode-based lasers. Each laser can operate as a probe beam or as a pump beam source. The laser outputs are redirected using a series of mirrors and beam splitters to reach an objective lens. The objective lens focuses the laser outputs on a sample. Reflected energy returns through objective and is redirected by a beam splitter to a detector. A lock-in amplifier converts the output of the detector to produce quadrature (Q) and in-phase (I) signals for analysis. A Processor uses the Q and/or I signals to analyze the sample. By changing the number of lasers used as pump or probe beam sources, the measurement system can be optimized to measure a range of different samples types.
摘要:
A modulated reflectance measurement system includes two diode-based lasers for generating a probe beam and an intensity modulated pump beam. The pump and probe beams are joined into a collinear beam using a laser diode power combiner. One or more optical fibers are used to transport the beams either before and/or after they are combined. The collinear beam is focused through one or more lenses or other optical components for collimation. The collinear beam is then focused by an objective lens onto a sample. Reflected energy returns through an objective and is redirected by a beam splitter to a detector. A lock-in amplifier converts the output of the detector to produce quadrature (Q) and in-phase (I) signals for analysis. A processor uses the Q and/or I signals to analyze the sample.
摘要:
Methods of obtaining dopant and damage depth profile information are disclosed using modulated optical reflectivity (MOR) measurements. In one aspect, the depth profile is constructed using information obtained from various measurements such as the junction depth, junction abruptness and dopant concentration. In another aspect, a full theoretical model is developed. Actual measurements are fed to the model. Using an iterative approach, the actual measurements are compared to theoretical measurements calculated from the model to determine the actual depth profile.
摘要:
A modulated reflectance measurement system includes three monochromatic diode-based lasers. Each laser can operate as a probe beam or as a pump beam source. The laser outputs are redirected using a series of mirrors and beam splitters to reach an objective lens. The objective lens focuses the laser outputs on a sample. Reflected energy returns through objective and is redirected by a beam splitter to a detector. A lock-in amplifier converts the output of the detector to produce quadrature (Q) and in-phase (I) signals for analysis. A Processor uses the Q and/or I signals to analyze the sample. By changing the number of lasers used as pump or probe beam sources, the measurement system can be optimized to measure a range of different samples types.
摘要:
A method for simultaneously monitoring ion implantation dose, damage and/or dopant depth profiles in ion-implanted semiconductors includes a calibration step where the photo-modulated reflectance of a known damage profile is identified in I-Q space. In a following measurement step, the photo-modulated reflectance of a subject is empirically measured to obtain in-phase and quadrature values. The in-phase and quadrature values are then compared, in I-Q space, to the known damage profile to characterize the damage profile of the subject.
摘要:
The repeatability of wafer uniformity measurements can be increased by taking spatially averaged measurements of wafer response. By increasing the time over which measurements are obtained, the amount of noise can be significantly reduced, thereby improving the repeatability of the measurements. These measurements can be taken at several locations on the wafer to ensure wafer uniformity. In order to get a stable and repeatable assessment of the wafer process, addressing uncertainties related to damage relaxation or incomplete anneal, an anneal decay factor (ADF) characterization can be performed at a distance away from the TW measurement boxes. From the ADF measurement and the spatially averaged measurements of wafer response, a repeatable assessment of the wafer process can be obtained.