Abstract:
A burner box assembly according to aspects of the disclosure includes an outer cover, the outer cover having a sloped bottom face that directs condensation away from a heat-exchange tube, a heat-resistant liner having a plurality of panel members, the heat-resistant liner being disposed within the outer cover, a shield disposed between the heat-resistant liner and the sloped bottom face of the outer cover such that an air gap is formed between the shield and the sloped bottom face, and a tubular member abutting at least one of the plurality of panel members and disposed within the heat-exchange tube.
Abstract:
A burner box assembly according to aspects of the disclosure includes an outer cover, the outer cover having a sloped bottom face that directs condensation away from a heat-exchange tube, a heat-resistant liner having a plurality of panel members, the heat-resistant liner being disposed within the outer cover, a shield disposed between the heat-resistant liner and the sloped bottom face of the outer cover such that an air gap is formed between the shield and the sloped bottom face, and a tubular member abutting at least one of the plurality of panel members and disposed within the heat-exchange tube.
Abstract:
A burner assembly according to aspects of the disclosure includes a burner surface carried by a burner, the burner surface extending outward from a front side of the burner, a housing coupled to the burner on a side opposite the front side of the burner, a gasket disposed between the burner and the housing, a thermally anisotropic protective covering located on the front side of the burner and surrounding a perimeter of the burner surface, and an igniter positioned adjacent to the burner surface.
Abstract:
A fresh-air intake according to aspects of the disclosure includes an outer cover having a pair of side panels disposed in a generally parallel spaced relationship, a top panel coupled to, and disposed generally perpendicular to, each panel of the pair of side panels, a bottom panel disposed generally parallel to the top panel, and a front panel coupled to, and disposed generally perpendicular to, each panel of the pair of side panels and the top panel, the front panel having a window formed therein, a supply line coupled to the bottom panel, a weir extending above the bottom panel and surrounding a junction with the supply line, a baffle disposed inside the outer cover, the baffle being disposed inwardly of the window so as to prevent infiltration of moisture into the supply line, and a weep hole formed in the bottom panel.
Abstract:
Retrofit assemblies and an HVAC unit including a retrofit assembly are disclosed herein. In one embodiment, the retrofit assembly includes: (1) a base plate, that is mountable to a face of a motor speed driver (MSD), having an attachment area, (2) a standoff bracket that is mountable to the attachment area of the base plate and having a configuration that secures the MSD in a position relative to an interior wall of the HVAC system and provides clearance between the interior wall of the HVAC system and the MSD such that wires can be routed between the MSD and the interior wall and (3) a control interface, electrically connectable between the MSD and a thermostat of the HVAC system, configured to differentiate thermostat calls from the thermostat and translate the thermostat calls to coordinate blower speeds for the blower motor via the MSD.
Abstract:
A burner assembly according to aspects of the disclosure includes a burner surface carried by a burner, the burner surface extending outward from a front side of the burner, a housing coupled to the burner on a side opposite the front side of the burner, a gasket disposed between the burner and the housing, a thermally anisotropic protective covering located on the front side of the burner and surrounding a perimeter of the burner surface, and an igniter positioned adjacent to the burner surface.
Abstract:
Retrofit assemblies and an HVAC unit including a retrofit assembly are disclosed herein. In one embodiment, the retrofit assembly includes: (1) a base plate, that is mountable to a face of a motor speed driver (MSD), having an attachment area, (2) a standoff bracket that is mountable to the attachment area of the base plate and having a configuration that secures the MSD in a position relative to an interior wall of the HVAC system and provides clearance between the interior wall of the HVAC system and the MSD such that wires can be routed between the MSD and the interior wall and (3) a control interface, electrically connectable between the MSD and a thermostat of the HVAC system, configured to differentiate thermostat calls from the thermostat and translate the thermostat calls to coordinate blower speeds for the blower motor via the MSD.
Abstract:
A condenser system that includes a first compressor and a second compressor. An upper coil and a de-superheater coil are fluidly coupled to the first compressor. The upper coil, the de-superheater coil, and the first compressor define a first compressor circuit. A lower coil is fluidly coupled to the second compressor. The lower coil and the second compressor define a second compressor circuit. The upper coil and the de-superheater coil together utilize an entire heat-transfer surface area.
Abstract:
A burner assembly according to aspects of the disclosure includes a burner surface carried by a burner, the burner surface extending outward from a front side of the burner, a housing coupled to the burner on a side opposite the front side of the burner, a gasket disposed between the burner and the housing, a thermally anisotropic protective covering located on the front side of the burner and surrounding a perimeter of the burner surface, and an igniter positioned adjacent to the burner surface.