Abstract:
A controller, a water source heat pump and a computer useable medium are disclosed herein. In one embodiment the controller includes: (1) an interface configured to receive operating data and monitoring data from the water source heat pump and transmit control signals to components of thereof and (2) a processor configured to respond to the operating data or the monitoring data by operating at least one motor-operated valve of the water source heat pump via a control signal.
Abstract:
A burner box assembly according to aspects of the disclosure includes an outer cover, the outer cover having a sloped bottom face that directs condensation away from a heat-exchange tube, a heat-resistant liner having a plurality of panel members, the heat-resistant liner being disposed within the outer cover, a shield disposed between the heat-resistant liner and the sloped bottom face of the outer cover such that an air gap is formed between the shield and the sloped bottom face, and a tubular member abutting at least one of the plurality of panel members and disposed within the heat-exchange tube.
Abstract:
A metering device may automatically control fluid flow through a valve. A control system may alter the automatic control of a metering device. In some implementations, a predetermined event may occur to alter the automatic control of the metering device.
Abstract:
A burner assembly according to aspects of the disclosure includes a burner surface carried by a burner, the burner surface extending outward from a front side of the burner, a housing coupled to the burner on a side opposite the front side of the burner, a gasket disposed between the burner and the housing, a thermally anisotropic protective covering located on the front side of the burner and surrounding a perimeter of the burner surface, and an igniter positioned adjacent to the burner surface.
Abstract:
A controller, a water source heat pump and a computer useable medium are disclosed herein. In one embodiment the controller includes: (1) an interface configured to receive operating data and monitoring data from the water source heat pump and transmit control signals to components of thereof and (2) a processor configured to respond to the operating data or the monitoring data by operating at least one motor-operated valve of the water source heat pump via a control signal.
Abstract:
A modulating heating system includes a tube heat exchanger having a plurality of burners, a combustion air blower (CAB) having an exhaust vent connected with the plurality of burners, the CAB operable at a first speed and a second speed, a first valve connecting a fuel source to a first subset of the plurality of burners, and a second valve connecting a fuel source to a second subset of the plurality of burners, wherein the first and second valves each have a low fire rate and a high fire rate. The heat exchanger is operable through multiple heat stages at a constant fuel-air mixture.
Abstract:
A method of defrosting an energy recovery ventilator unit. The method comprises defrosting an energy recovery ventilator unit. The method comprises activating a defrost process of an enthalpy-exchange zone of the energy recovery ventilator unit when an air-flow blockage in the enthalpy-exchange zone coincides with a frost threshold in the ambient environment surrounding the energy recovery ventilator unit. The method also comprises terminating the defrost process when a heat transfer efficiency across the enthalpy-exchange zone returns to within 10 percent of a pre-frosting heat transfer efficiency wherein, the heat transfer efficiency is proportional to a temperature difference between an intake air zone of the energy recovery ventilator and a supply air zone of the energy recovery ventilator divided by a temperature difference between an return air zone of the energy recovery ventilator and the intake air zone.
Abstract:
The present invention provides a system for heating a compressor assembly of a heating, ventilation, and air conditioning (HVAC) system. The system comprises a heat source for transferring thermal energy to a plurality of compressor units. A controller varies the thermal energy transferred to the compressor units, between at least two substantially non-zero rates of transfer of thermal energy, in a plurality of modes of operation of the HVAC system.
Abstract:
An energy recovery ventilator unit. The unit comprises a cabinet housing a primary intake zone, a supply zone, a return zone, an exhaust zone and an enthalpy-exchange zone. The primary intake zone and the exhaust zone are both on one side of the enthalpy exchange zone. The supply zone and the return zone are both on an opposite side of the enthalpy exchange zone. The unit also comprises first and second blowers. The first blower is located in the primary intake zone and configured to push outside air into the primary intake zone and straight through the enthalpy exchange zone into the supply zone. The second blower is located in the return zone and configured to push return air into the return zone and straight through the enthalpy exchange zone into the exhaust zone.
Abstract:
An HVAC system includes an evaporator coil disposed between a supply air duct and a return air duct. A re-circulation duct fluidly couples the supply air duct and the return air duct. A damper is disposed in the re-circulation duct and is moveable between an open position and a closed position. A controller is operatively coupled to a variable-speed compressor, a variable-speed circulation fan, and the damper. Responsive to a determination that the variable-speed circulation fan is operating at the minimum speed and the suction pressure is above the pre-determined threshold, the controller signals the damper to move to the open position. Responsive to a determination that the variable-speed circulation fan is not operating at the minimum speed or the suction pressure is below the pre-determined threshold, the controller signals the damper to move to the closed position.