摘要:
A method and computer system for reducing the wiring congestion, required real estate, and access latency in a cache subsystem with a sectored and sliced lower cache by re-configuring sector-to-slice allocation and the lower cache addressing scheme. With this allocation, sectors having discontiguous addresses are placed within the same slice, and a reduced-wiring scheme is possible between two levels of lower caches based on this re-assignment of the addressable sectors within the cache slices. Additionally, the lower cache effective address tag is re-configured such that the address fields previously allocated to identifying the sector and the slice are switched relative to each other's location within the address tag. This re-allocation of the address bits enables direct slice addressing based on the indicated sector.
摘要:
A method and computer system for reducing the wiring congestion, required real estate, and access latency in a cache subsystem with a sectored and sliced lower cache by re-configuring sector-to-slice allocation and the lower cache addressing scheme. With this allocation, sectors having discontiguous addresses are placed within the same slice, and a reduced-wiring scheme is possible between two levels of lower caches based on this re-assignment of the addressable sectors within the cache slices. Additionally, the lower cache effective address tag is re-configured such that the address fields previously allocated to identifying the sector and the slice are switched relative to each other's location within the address tag. This re-allocation of the address bits enables direct slice addressing based on the indicated sector.
摘要:
A cache coherent data processing system includes at least first and second coherency domains each including at least one processing unit. The first coherency domain includes a first cache memory and a second cache memory, and the second coherency domain includes a remote coherent cache memory. The first cache memory includes a cache controller, a data array including a data storage location for caching a memory block, and a cache directory. The cache directory includes a tag field for storing an address tag in association with the memory block and a coherency state field associated with the tag field and the data storage location. The coherency state field has a plurality of possible states including a state that indicates that the memory block is possibly shared with the second cache memory in the first coherency domain and cached only within the first coherency domain.
摘要:
A cache coherent data processing system includes at least first and second coherency domains each including at least one processing unit. The first coherency domain includes a first cache memory and a second cache memory, and the second coherency domain includes a remote coherent cache memory. The first cache memory includes a cache controller, a data array including a data storage location for caching a memory block, and a cache directory. The cache directory includes a tag field for storing an address tag in association with the memory block and a coherency state field associated with the tag field and the data storage location. The coherency state field has a plurality of possible states including a state that indicates that the memory block is possibly shared with the second cache memory in the first coherency domain and cached only within the first coherency domain.
摘要:
A method, system, and device for enabling intervention across same-level cache memories. In a preferred embodiment, responsive to a cache miss in a first cache memory a direct intervention request is sent from the first cache memory to a second cache memory requesting a direct intervention that satisfies the cache miss. In an alternate embodiment, direct intervention is utilized to access a same-level victim cache.
摘要:
A cache memory logically partitions a cache array having a single access/command port into at least two slices, and uses a first directory to access the first array slice while using a second directory to access the second array slice, but accesses from the cache directories are managed using a single cache arbiter which controls the single access/command port. In one embodiment, each cache directory has its own directory arbiter to handle conflicting internal requests, and the directory arbiters communicate with the cache arbiter. The cache array is arranged with rows and columns of cache sectors wherein a cache line is spread across sectors in different rows and columns, with a portion of the given cache line being located in a first column having a first latency and another portion of the given cache line being located in a second column having a second latency greater than the first latency.
摘要:
A method, system, and device for enabling intervention across same-level cache memories. In a preferred embodiment, responsive to a cache miss in a first cache memory a direct intervention request is sent from the first cache memory to a second cache memory requesting a direct intervention that satisfies the cache miss. In an alternate embodiment, direct intervention is utilized to access a same-level victim cache.
摘要:
A cache memory logically partitions a cache array having a single access/command port into at least two slices, and uses a first cache directory to access the first cache array slice while using a second cache directory to access the second cache array slice, but accesses from the cache directories are managed using a single cache arbiter which controls the single access/command port. In the illustrative embodiment, each cache directory has its own directory arbiter to handle conflicting internal requests, and the directory arbiters communicate with the cache arbiter. An address tag associated with a load request is transmitted from the processor core with a designated bit that associates the address tag with only one of the cache array slices whose corresponding directory determines whether the address tag matches a currently valid cache entry. The cache array may be arranged with rows and columns of cache sectors wherein a given cache line is spread across sectors in different rows and columns, with at least one portion of the given cache line being located in a first column having a first latency and another portion of the given cache line being located in a second column having a second latency greater than the first latency. The cache array outputs different sectors of the given cache line in successive clock cycles based on the latency of a given sector.
摘要:
A cache memory logically partitions a cache array having a single access/command port into at least two slices, and uses a first directory to access the first array slice while using a second directory to access the second array slice, but accesses from the cache directories are managed using a single cache arbiter which controls the single access/command port. In one embodiment, each cache directory has its own directory arbiter to handle conflicting internal requests, and the directory arbiters communicate with the cache arbiter. The cache array is arranged with rows and columns of cache sectors wherein a cache line is spread across sectors in different rows and columns, with a portion of the given cache line being located in a first column having a first latency and another portion of the given cache line being located in a second column having a second latency greater than the first latency.
摘要:
A cache coherent data processing system includes at least first and second coherency domains each including at least one processing unit and a cache memory. The cache memory includes a cache controller, a data array including a data storage location for caching a memory block, and a cache directory. The cache directory includes a tag field for storing an address tag in association with the memory block and a coherency state field associated with the tag field and the data storage location. The coherency state field has a plurality of possible states including a state that indicates that the address tag is valid, that the storage location does not contain valid data, and that the memory block is possibly cached outside of the first coherency domain.