摘要:
An environmental compensation apparatus for an electrochemical fuel cell assembly, wherein a compressible material is dispersed within a coolant flow of the fuel cell assembly and is utilized to compensate for the expansion of the coolant when said fuel cell assembly is subjected to harsh environmental conditions. The compressible material is formed as a plurality of either polymeric or elastomer microspheres, each microsphere having a diameter larger than the pores of an anode or cathode flow field plate, yet smaller than the diameter of a coolant channel.
摘要:
A proton exchange membrane fuel cell has a noble metal or noble metal alloy catalyst 15 disposed in its air inlet manifold 13. During start up, a fuel cell is warmed to operating temperature by introducing a small amount of hydrogen into a flow of air to the air inlet 12 of the fuel cell where they react with the catalyst to produce heat at subflame temperatures. The adiabatic temperature rise of the gas stream is limited to about 150.degree. F. by limiting the hydrogen to about one volume percent of the fuel/oxidant mixture, thereby to be capable of raising the fuel cell temperature, for instance, from -40.degree. C. (-40.degree. F.) to about +45.degree. C. (+113.degree. F.), without flame, explosion or drying out of the membrane.
摘要:
An integrated fuel cell stack assembly (26) and selective oxidizer bed assembly (200) is provided. The fuel cell stack assembly (26) also includes a number of fuel cells. A fuel inlet manifold (22) and fuel inlet plenum to cell stack (38) manifold are arranged in fluid communication with the fuel stack assembly (26) for supplying to and exhausting from, respectively, the fuel supply in the fuel cells in the fuel stack assembly (26). The bed resides in said fuel inlet manifold. The bed includes a selective oxidation catalyst with a heat exchange fluid conduit routed therethrough. Oxygen-containing gas is supplied into the bed via the input plenum. The temperature of the internal selective oxidizer bed is controlled by the fluid conduit in the bed to reduce carbon monoxide in the fuel.
摘要:
The present disclosure provides for improved electrochemical devices (e.g., fuel cells, metal air batteries, ultra capacitors, etc.) and components therefore. More particularly, the present disclosure provides for improved systems and methods for producing materials, membranes, electrode assemblies (e.g., membrane electrode assemblies) and electrochemical devices employing the membranes and/or electrode assemblies. The present disclosure provides for improved systems and methods for producing high activity materials, membranes and/or electrode assemblies (e.g., MEAs) for use in electrochemical devices, wherein the high activity membranes and/or electrode assemblies include at least one inorganic acid. In exemplary embodiments, the present disclosure provides for improved systems and methods for producing high activity membranes and/or electrode assemblies (e.g., MEAs) for use in electrochemical devices, wherein the high activity membranes and/or electrode assemblies include at least one inorganic acid in the catalyst layer and/or in the cathode.
摘要:
The present invention relates to a method and apparatus for creating steam from the cooling stream of a proton exchange membrane (PEM) fuel cell. As the cooling stream exits the PEM fuel cell, a portion of the cooling fluid is extracted from the circulating cooling stream, thereby creating a secondary stream of cooling fluid. This secondary stream passes through a restriction, which decreases the pressure of the secondary stream to its saturation pressure, such that when the secondary stream enters a flash evaporator it transforms into steam. Creating steam from the cooling stream of a PEM fuel cell power plant provides the fuel processor with a co-generated source of steam without adding a significant amount of auxiliary equipment to the power plant.
摘要:
The fuel cell power plant has a closed water circulation system whose only source of fresh water is the electrochemical reaction in the power section. The water becomes contaminated with ammonia and carbon dioxide in the fuel contact cooler and the ammonia and carbon dioxide are stripped out of the water by steam produced by operating the plant. The ammonia and carbon dioxide-laden steam is vented from the plant. The amount of water lost from the plant as steam is less than the amount of available water produced in the electrochemical reaction.
摘要:
An apparatus for the thermal management of an electrochemical fuel cell assembly, wherein a plurality of thermal management loops in contact with the fuel cell assembly are utilized to maintain the fuel cell assembly above freezing or, alternatively, raise the fuel cell assembly above freezing. The thermal management loops are in thermal communication with the fuel cell assembly as well as each other, but are diffusably isolated from one another.