摘要:
A multi-amplification path optical amplifier including a first amplification path for propagating and amplifying a first in-band optical communication signal, including a spectrally selective filter for substantially blocking the propagation and amplification of an out-of-band optical communication signal along the first amplification path, and a second amplification path for propagating and amplifying a second in-band optical communication signal, including a spectrally selective filter for substantially blocking the propagation and amplification of an out-of-band optical communication signal along the second amplification path, wherein the location of the spectrally selective filters in each respective amplification path is selected so that a target noise figure performance and a target output power performance can be obtained from the device. The spectrally selective insertion losses suppress crosstalk or optical leakage that gives rise to multipath interference, return loss, and self oscillation.
摘要:
A multi-amplification path optical amplifier including a first amplification path for propagating and amplifying a first in-band optical communication signal, including a spectrally selective filter for substantially blocking the propagation and amplification of an out-of-band optical communication signal along the first amplification path, and a second amplification path for propagating and amplifying a second in-band optical communication signal, including a spectrally selective filter for substantially blocking the propagation and amplification of an out-of-band optical communication signal along the second amplification path, wherein the location. If the spectrally selective filters in each respective amplification path is selected so that a target noise figure performance and a target output power performance can be obtained from the device. The spectrally selective insertion losses suppress crosstalk or optical leakage that gives rise to multipath interference, return loss, and self oscillation.
摘要:
Described is a method for designing individual stages of a multiple cascaded etalon TDC device to allow continuous thermo-optic tuning over a desired range without inducing incremental signal distortion due to uncontrolled and unpredictable dispersion of the TDC during tuning. This allows the signal to transmit without encountering periods of incremental distortion or dark spots. The method includes prior knowledge of each etalon stage, after full assembly, for spectral group delay profile as a function of temperature through modeling and/or characterization. Characterization can account for performance variations that are due to allowed manufacturing tolerances.
摘要:
Described is a method for designing individual stages of a multiple cascaded etalon TDC device to allow continuous thermo-optic tuning over a desired range without inducing incremental signal distortion due to uncontrolled and unpredictable dispersion of the TDC during tuning. This allows the signal to transmit without encountering periods of incremental distortion or dark spots. The method includes prior knowledge of each etalon stage, after full assembly, for spectral group delay profile as a function of temperature through modeling and/or characterization. Characterization can account for performance variations that are due to allowed manufacturing tolerances.
摘要:
Described is a method for designing individual stages of a multiple cascaded etalon TDC device to allow continuous thermo-optic tuning over a desired range without inducing incremental signal distortion due to uncontrolled and unpredictable dispersion of the TDC during tuning. This allows the signal to transmit without encountering periods of incremental distortion or dark spots. The method includes prior knowledge of each etalon stage, after full assembly, for spectral group delay profile as a function of temperature through modeling and/or characterization. Characterization can account for performance variations that are due to allowed manufacturing tolerances.
摘要:
Described is a method for designing individual stages of a multiple cascaded etalon TDC device to allow continuous thermo-optic tuning over a desired range without inducing incremental signal distortion due to uncontrolled and unpredictable dispersion of the TDC during tuning. This allows the signal to transmit without encountering periods of incremental distortion or dark spots. The method includes prior knowledge of each etalon stage, after full assembly, for spectral group delay profile as a function of temperature through modeling and/or characterization. Characterization can account for performance variations that are due to allowed manufacturing tolerances.
摘要:
The present invention is directed to a method of enhancing the photosensitivity of an optical waveguide and an optical waveguide having persistent UV photosensitivity following out diffusion of a loading gas such as H2 or D2. The optical waveguide is loaded with a gas such as H2 or D2 to form an associated baseline refractive index. At least a portion of the loaded optical waveguide is exposed to UV radiation to induce a change in the baseline refractive index and the waveguide is annealed to diffuse the gas from the loaded optical waveguide and to stabilize the change in refractive index. Following annealing the optical waveguide retains a UV photosensitivity sufficient to produce significant refractive index changes relative to the induced change in baseline refractive index. The method of the present invention is particularly well suited for designing and fabricating grating devices, tuning grating strength and wavelength, and for providing accurate spatial control of waveguide photosensitivity. Waveguides having complex photosensitivity profiles as a function of length are also disclosed.