Abstract:
Apparatus and method for imaging a patient in an MRI system. This includes a frame, and at least one assembly that includes a patient-interface positioner connected to a reference position on the frame, a first lockable joint on the positioner; and a patient interface connected to a patient-proximal end of the positioner by a second joint, wherein the first patient-interface is moveably positioned to a selected pitch angle, a selected yaw angle, and a selected one of a plurality of distances relative to the reference position on the frame. The first lockable joint is configured to be tightened to yieldably hold the first patient-interface at the selected pitch and yaw angles, and at the selected one of the plurality of distances, relative to the reference position. Optionally a second substantially similar patient-interface and assembly are provided. The earpiece(s) optionally include audio transducer(s) and/or RF coil(s).
Abstract:
Apparatus and method for imaging a patient in an MRI system. This includes a frame, and at least one assembly that includes a patient-interface positioner connected to a reference position on the frame, a first lockable joint on the positioner; and a patient interface connected to a patient-proximal end of the positioner by a second joint, wherein the first patient-interface is moveably positioned to a selected pitch angle, a selected yaw angle, and a selected one of a plurality of distances relative to the reference position on the frame. The first lockable joint is configured to be tightened to yieldably hold the first patient-interface at the selected pitch and yaw angles, and at the selected one of the plurality of distances, relative to the reference position. Optionally a second substantially similar patient-interface and assembly are provided. The earpiece(s) optionally include audio transducer(s) and/or RF coil(s).
Abstract:
Apparatus and method for a radially attachable RF trap attached from a side to a shielded RF cable. In some embodiments, the RF trap creates a high impedance on the outer shield of the RF cable at a frequency of RF signals carried on at least one inner conductor of the cable. In some embodiments, an RF-trap apparatus for blocking stray signals on a shielded RF cable that has a peripheral shield conductor and a inner conductor for carrying RF signals includes: a case; an LC circuit having a resonance frequency equal to RF signals carried on the inner conductor; projections that pierce and connect the LC circuit to the shield conductor; and an attachment device that holds the case to the cable with the LC circuit electrically connected to the shield conductor of the shielded RF cable.
Abstract:
A method and apparatus for transmitting and receiving RF signals suitable for MRI and/or MRS from MR “coils” (antennae) that are arranged in an array next to a tissue-sample-slice holder that constrains the front, back, and edges of the tissue sample and is configured to rotate in a “roll” direction (about an axis parallel to the main DC magnetic field) and optionally also rotate in a pitch direction (at varying angles up and down, left-to-right, or both, relative to the roll axis and thus to the main DC magnetic field); the system optionally includes temperature control (heat and/or cooling), an optical grid that is marked or etched into a cover glass that holds the sample (in some embodiments, the grid is visible in the MRI images as well), an electrical and/or optical stimulation means for delivering stimulation Some embodiments combine optical image data with MR image data.
Abstract:
A method and apparatus for receiving (RX) radio-frequency (RF) signals suitable for MRI and/or MRS from a plurality of MRI “coil elements” (antennae), each contained in one or a plurality of body-coil parts, wherein the body-coil parts are easily assemble-able into a body-coil assembly (e.g., in some embodiments, a cylindrical body-coil assembly) with shield elements that are overlapped and/or concentric, and wherein the body-coil assembly is readily disassemble-able for easier shipping, and wherein the body-coil parts are optionally usable individually as transmit (TX) and/or receive (RX) coil elements for MRI. In some embodiments, the system provides for repeatable assembly and disassembly for ease of maintenance (such as frequency tuning and impedance matching) such that the body-coil assembly can be fully assembled and tested, then taken apart for less costly and easier shipping (with reduced risk of damage) and then reassembled at the destination for operation in an MRI system.
Abstract:
Apparatus and method for a radially attachable RF trap attached from a side to a shielded RF cable. In some embodiments, the RF trap creates a high impedance on the outer shield of the RF cable at a frequency of RF signals carried on at least one inner conductor of the cable. In some embodiments, an RF-trap apparatus for blocking stray signals on a shielded RF cable that has a peripheral shield conductor and a inner conductor for carrying RF signals includes: a case; an LC circuit having a resonance frequency equal to RF signals carried on the inner conductor; projections that pierce and connect the LC circuit to the shield conductor; and an attachment device that holds the case to the cable with the LC circuit electrically connected to the shield conductor of the shielded RF cable.
Abstract:
A method and apparatus for receiving (RX) radio-frequency (RF) signals suitable for MRI and/or MRS from a plurality of MRI “coil loops” in each of a plurality of coil parts, each coil part having a subset of the total number of coil loops. In some embodiments, a first base part, optionally having no coils, is used to provide support of the plurality of coil parts, wherein the plurality of coil parts include a second part holding back-of-the-head coil loops, a third part holding right-side-of-the-head coil loops, a fourth part holding right-side-of-the-head coil loops, and a fifth part holding top-of-the-head coil loops. In some embodiments, the system provides for repeatable positioning, frequency tuning, and impedance matching such that experimental conditions can be replicated for later examinations of each of a plurality of patients having differing impacts on positioning, tuning and matching of the various coil parts.
Abstract:
A method and apparatus for receiving (RX) radio-frequency (RF) signals suitable for MRI and/or MRS from a plurality of MRI “coil elements” (antennae), each contained in one or a plurality of body-coil parts, wherein the body-coil parts are easily assemble-able into a body-coil assembly (e.g., in some embodiments, a cylindrical body-coil assembly) with shield elements that are overlapped and/or concentric, and wherein the body-coil assembly is readily disassemble-able for easier shipping, and wherein the body-coil parts are optionally usable individually as transmit (TX) and/or receive (RX) coil elements for MRI. In some embodiments, the system provides for repeatable assembly and disassembly for ease of maintenance (such as frequency tuning and impedance matching) such that the body-coil assembly can be fully assembled and tested, then taken apart for less costly and easier shipping (with reduced risk of damage) and then reassembled at the destination for operation in an MRI system.
Abstract:
A method and apparatus for processing radio-frequency (RF) signals suitable for magnetic-resonance imaging (MRI) and/or magnetic-resonance spectroscopy (MRS) from radio-frequency (RF) coils that have strongly-coupled coil loop pairs, each pair including a transmit loop and a receive loop, wherein the transmit loop and the receive loop are of equal sizes and shapes and in close proximity to each other, and wherein a suitable attenuated and phase-adjusted version of a transmit pulse is subtracted from a receive signal obtained from tissue being examined to improve signal-to-noise ratio (SNR) of the received signal.
Abstract:
Apparatus and method for a radially attachable RF trap attached from a side to a shielded RF cable. In some embodiments, the RF trap creates a high impedance on the outer shield of the RF cable at a frequency of RF signals carried on at least one inner conductor of the cable. In some embodiments, an RF-trap apparatus for blocking stray signals on a shielded RF cable that has a peripheral shield conductor and a inner conductor for carrying RF signals includes: a case; an LC circuit having a resonance frequency equal to RF signals carried on the inner conductor; projections that pierce and connect the LC circuit to the shield conductor; and an attachment device that holds the case to the cable with the LC circuit electrically connected to the shield conductor of the shielded RF cable.