摘要:
A checkpoint free log mining mechanism comprising a capture process and an apply process that are logically associated with each other may be provided in a database system. In an embodiment, log mining information published by the capture process to the apply process comprises a complete set of log information for each interesting transaction. A system change number of a start transaction record of a transaction may be used to represent a start time of the entire transaction. The capture and apply processes may work cooperatively to establish a safe time point in the form of a particular system change number in logs to begin mining, under various circumstances such as in an initial startup state, in a steady state, in a process restart scenario in the middle of checkpoint free log mining, or in a transition between the checkpoint mode and the checkpoint free mode.
摘要:
A checkpoint free log mining mechanism comprising a capture process and an apply process that are logically associated with each other may be provided in a database system. In an embodiment, log mining information published by the capture process to the apply process comprises a complete set of log information for each interesting transaction. A system change number of a start transaction record of a transaction may be used to represent a start time of the entire transaction. The capture and apply processes may work cooperatively to establish a safe time point in the form of a particular system change number in logs to begin mining, under various circumstances such as in an initial startup state, in a steady state, in a process restart scenario in the middle of checkpoint free log mining, or in a transition between the checkpoint mode and the checkpoint free mode.
摘要:
In accordance with an embodiment of the present invention, an information sharing mechanism comprising a memory structure may be provided in a database system. In an embodiment, mined information transferred by a capture process to an associated apply process can be written into the memory structure without taking any latch. Similarly, the mined information can be read by the apply process from the memory structure without taking any latch. The capture and apply processes may work cooperatively to establish a safe point in log mining under various circumstances such as in an initial startup state, in a steady state, in a process restart scenario in the middle of information sharing. In some embodiments, the information sharing mechanism supports both checkpoint-free and checkpoint modes of log mining by the capture process. In addition, both the capture process and the apply process may employ an eager apply approach to increase processing capacity.
摘要:
In accordance with an embodiment of the present invention, an information sharing mechanism comprising a memory structure may be provided in a database system. In an embodiment, mined information transferred by a capture process to an associated apply process can be written into the memory structure without taking any latch. Similarly, the mined information can be read by the apply process from the memory structure without taking any latch. The capture and apply processes may work cooperatively to establish a safe point in log mining under various circumstances such as in an initial startup state, in a steady state, in a process restart scenario in the middle of information sharing. In some embodiments, the information sharing mechanism supports both checkpoint-free and checkpoint modes of log mining by the capture process. In addition, both the capture process and the apply process may employ an eager apply approach to increase processing capacity.
摘要:
Performing an operation directly on data stored in a database table provides for avoiding generation and processing of SQL statements. A Data Layer interface, comprising a set of APIs, allows internal database server components to call directly to the Data Layer for making fast row changes to a table. According to an embodiment, before making any row change to a table through this Data Layer interface, a shared state data structure is created to hold the metadata about the table. A single shared state can be used for all DML changes to a particular table regardless of what columns are updated or inserted during each DML operation. When a process needs to change a row, the process uses a mutable state based on the shared state of the table.
摘要:
Performing an operation directly on data stored in a database table provides for avoiding generation and processing of SQL statements. A Data Layer interface, comprising a set of APIs, allows internal database server components to call directly to the Data Layer for making fast row changes to a table. According to an embodiment, before making any row change to a table through this Data Layer interface, a shared state data structure is created to hold the metadata about the table. A single shared state can be used for all DML changes to a particular table regardless of what columns are updated or inserted during each DML operation. When a process needs to change a row, the process uses a mutable state based on the shared state of the table.
摘要:
A method for sharing information between a publisher and multiple subscribers is provided. The publisher uses a latch-free, single publisher, multiple subscriber shared queue to share information. Logical change records representing changes made to a database are enqueued in the shared queue as messages in a stream of messages, and subscribers read the logical change records. Subscribers may filter logical change records before sending to apply processes for processing. An identifying property of the source instance of a change encapsulated in a logical change record may be included with each message enqueued.
摘要:
A method for sharing information between a publisher and multiple subscribers is provided. The publisher uses a latch-free, single publisher, multiple subscriber shared queue to share information. Logical change records representing changes made to a database are enqueued in the shared queue as messages in a stream of messages, and subscribers read the logical change records. Subscribers may filter logical change records before sending to apply processes for processing. An identifying property of the source instance of a change encapsulated in a logical change record may be included with each message enqueued.
摘要:
Techniques for replicating data in database systems are described. In an example embodiment, a set of changes is received at a destination database, where the set of changes has been applied at a source database and is being replicated from the source database to the destination database. The set of changes is analyzed and it is determined that the set of changes includes two or more of: a subset of row-level changes, a subset of statement-level changes, and a subset of procedure-level changes. A set of dependencies is determined at least between the changes that are included in the subsets of changes. The changes, in the subsets of changes, are assigned to two or more processing elements. The set of changes is applied to the destination database by executing the two or more processing elements in parallel to each other and based on the set of dependencies.
摘要:
A method and apparatus for replicating data between heterogeneous databases is provided. Data is replicated between two heterogeneous databases with the use of a volatile storage queue, enabling the rapid replication of data across databases provided by different vendors or operating on different platforms. According to one embodiment, an in-memory queue is used to queue change operations to be performed on a target data repository. The change operations may be operations that were applied to a source data repository. An apply process retrieves the change operations from in-memory queue and commits the change operations to persistent storage. When the change operations have been committed, the apply process notifies the source platform that the particular change operation has been stored.