摘要:
A checkpoint free log mining mechanism comprising a capture process and an apply process that are logically associated with each other may be provided in a database system. In an embodiment, log mining information published by the capture process to the apply process comprises a complete set of log information for each interesting transaction. A system change number of a start transaction record of a transaction may be used to represent a start time of the entire transaction. The capture and apply processes may work cooperatively to establish a safe time point in the form of a particular system change number in logs to begin mining, under various circumstances such as in an initial startup state, in a steady state, in a process restart scenario in the middle of checkpoint free log mining, or in a transition between the checkpoint mode and the checkpoint free mode.
摘要:
A checkpoint free log mining mechanism comprising a capture process and an apply process that are logically associated with each other may be provided in a database system. In an embodiment, log mining information published by the capture process to the apply process comprises a complete set of log information for each interesting transaction. A system change number of a start transaction record of a transaction may be used to represent a start time of the entire transaction. The capture and apply processes may work cooperatively to establish a safe time point in the form of a particular system change number in logs to begin mining, under various circumstances such as in an initial startup state, in a steady state, in a process restart scenario in the middle of checkpoint free log mining, or in a transition between the checkpoint mode and the checkpoint free mode.
摘要:
In accordance with an embodiment of the present invention, an information sharing mechanism comprising a memory structure may be provided in a database system. In an embodiment, mined information transferred by a capture process to an associated apply process can be written into the memory structure without taking any latch. Similarly, the mined information can be read by the apply process from the memory structure without taking any latch. The capture and apply processes may work cooperatively to establish a safe point in log mining under various circumstances such as in an initial startup state, in a steady state, in a process restart scenario in the middle of information sharing. In some embodiments, the information sharing mechanism supports both checkpoint-free and checkpoint modes of log mining by the capture process. In addition, both the capture process and the apply process may employ an eager apply approach to increase processing capacity.
摘要:
In accordance with an embodiment of the present invention, an information sharing mechanism comprising a memory structure may be provided in a database system. In an embodiment, mined information transferred by a capture process to an associated apply process can be written into the memory structure without taking any latch. Similarly, the mined information can be read by the apply process from the memory structure without taking any latch. The capture and apply processes may work cooperatively to establish a safe point in log mining under various circumstances such as in an initial startup state, in a steady state, in a process restart scenario in the middle of information sharing. In some embodiments, the information sharing mechanism supports both checkpoint-free and checkpoint modes of log mining by the capture process. In addition, both the capture process and the apply process may employ an eager apply approach to increase processing capacity.
摘要:
Techniques for replicating data between database systems without taking checkpoints are provided. In an embodiment, a capture process restarts. Upon restarting, the capture process reestablishes an association with an apply process. A particular logical time maintained by the apply process is then communicated to the capture process. Upon receiving the particular logical time, the capture process restarts mining from this particular logical time.
摘要:
Techniques for replicating data between database systems without taking checkpoints are provided. In an embodiment, a capture process restarts. Upon restarting, the capture process reestablishes an association with an apply process. A particular logical time maintained by the apply process is then communicated to the capture process. Upon receiving the particular logical time, the capture process restarts mining from this particular logical time.
摘要:
Performing an operation directly on data stored in a database table provides for avoiding generation and processing of SQL statements. A Data Layer interface, comprising a set of APIs, allows internal database server components to call directly to the Data Layer for making fast row changes to a table. According to an embodiment, before making any row change to a table through this Data Layer interface, a shared state data structure is created to hold the metadata about the table. A single shared state can be used for all DML changes to a particular table regardless of what columns are updated or inserted during each DML operation. When a process needs to change a row, the process uses a mutable state based on the shared state of the table.
摘要:
Performing an operation directly on data stored in a database table provides for avoiding generation and processing of SQL statements. A Data Layer interface, comprising a set of APIs, allows internal database server components to call directly to the Data Layer for making fast row changes to a table. According to an embodiment, before making any row change to a table through this Data Layer interface, a shared state data structure is created to hold the metadata about the table. A single shared state can be used for all DML changes to a particular table regardless of what columns are updated or inserted during each DML operation. When a process needs to change a row, the process uses a mutable state based on the shared state of the table.
摘要:
A computer is programmed to parse a network that interconnects databases in a distributed database system, into a number of paths, wherein each path starts in a source database that is a source of changes and ends in a destination database that uses the changes to replicate the source database. The computer identifies databases that occur within each path in the network, and queries the identified databases to obtain statistics for each path. Statistics along each path are analyzed automatically, to identify a component in each path as a candidate for further investigation. The identified component may be marked as a bottleneck e.g. if there are no other paths connected to it. Alternatively the identified component may be a source of changes for another path that has a bottleneck or that has another candidate for further investigation. The identified bottleneck is displayed to the user with recommendations for improvement.
摘要:
A computer is programmed to parse a network that interconnects databases in a distributed database system, into a number of paths, wherein each path starts in a source database that is a source of changes and ends in a destination database that uses the changes to replicate the source database. The computer identifies databases that occur within each path in the network, and queries the identified databases to obtain statistics for each path. Statistics along each path are analyzed automatically, to identify a component in each path as a candidate for further investigation. The identified component may be marked as a bottleneck e.g. if there are no other paths connected to it. Alternatively the identified component may be a source of changes for another path that has a bottleneck or that has another candidate for further investigation. The identified bottleneck is displayed to the user with recommendations for improvement.