Abstract:
A method for forming oxides on buried N.sup.+ -type regions in a memory cell fabrication process, suitable for forming oxides on the bury N.sup.+ -type regions before self-aligned MOS device etching, comprises: (1) implanting a high concentration of impurity into the buried N.sup.+ -type regions; (2) annealing the chip; and (3) executing a dry oxide process and then a wet oxidation process to the chip, thereby preventing damage to the edges of buried N.sup.+ -type regions caused by non-uniform thickness of oxides on buried regions during self-aligned MOS etching and resolving the problem of non-uniform oxides on buried N.sup.+ -type regions.
Abstract:
A method of erasing a split gate flash memory cell is provided, which can be used in the operation of a split gate flash memory cell to increase the number of its rewritable cycles. The improvement is remarkable especially for flash memory cells while its floating gate channel length is under a 0.4 .mu.m-feature size. The erasing method includes the steps of: (i) applying a negative voltage to the control gate and applying a positive voltage to the drain to form a forward electrical field between the drain and the control gate; and (ii) applying a positive voltage to the source to reduce a voltage difference between the drain and the source, so that electrons in the floating gate are discharged under the effect of the forward electrical field generated by the Fowler-Nordheim tunneling effect, and hot holes can be reduced and prevented from accumulating in a tunnel oxide between the floating gate and the drain, thereby erasing the split-gate flash memory cell, and increasing the number of rewritable cycles for the flash memory cell.
Abstract:
A method for manufacturing self-aligned split-gate flash memory cells wherein the split-gate structure is formed by a self-aligned approach, so that the length of a channel can be precisely controlled. Furthermore, sources and drains are formed separately by executing different implantations, so that the dopant parameters of the sources and drains can be changed, based on desired and possibly different characteristics.