Abstract:
A peak-buck peak-boost current mode control structure and scheme for a synchronous four-switch and non-synchronous two-switch buck-boost regulators sense input and output voltages to smoothly transition between buck mode, buck-boost mode, and boost mode for high power efficiency and low output ripples. With the inductor current sensing, the control scheme achieves the best performance in continuous conduction and discontinuous condition mode operations.
Abstract:
A peak-buck peak-boost current mode control structure and scheme for a synchronous four-switch and non-synchronous two-switch buck-boost regulators sense input and output voltages to smoothly transition between buck mode, buck-boost mode, and boost mode for high power efficiency and low output ripples. With the inductor current sensing, the control scheme achieves the best performance in continuous conduction and discontinuous condition mode operations.
Abstract:
In the example of a voltage regulator outputting a negative voltage, its feedback voltage will also be negative. The feedback voltage is typically created using a resistor divider. A controller IC is powered by only a positive voltage and receives the negative feedback voltage at a high impedance input of an inverting amplifier. Therefore, the inverting amplifier does not load the resistor divider, resulting in an accurate regulated output voltage. The inverting amplifier converts the negative feedback voltage to a positive feedback voltage for further processing by the controller IC. An error amplifier and a power good monitor receive both the original feedback voltage and the inverted feedback voltage and use whichever feedback voltage is the more positive one. Therefore, the controller IC may be used in voltage regulators that generate either negative or positive output voltages.
Abstract:
In the example of a voltage regulator outputting a negative voltage, its feedback voltage will also be negative. The feedback voltage is typically created using a resistor divider. A controller IC is powered by only a positive voltage and receives the negative feedback voltage at a high impedance input of an inverting amplifier. Therefore, the inverting amplifier does not load the resistor divider, resulting in an accurate regulated output voltage. The inverting amplifier converts the negative feedback voltage to a positive feedback voltage for further processing by the controller IC. An error amplifier and a power good monitor receive both the original feedback voltage and the inverted feedback voltage and use whichever feedback voltage is the more positive one. Therefore, the controller IC may be used in voltage regulators that generate either negative or positive output voltages.