摘要:
An Integrated Optics Chip with improved performance when exposed to rapidly changing temperature is disclosed. The optic chip or integrated optic chip or MIOC has a top surface, a +Z face and -Z face. The chip is formed from a crystal having a high electro-optic coefficient such as Lithium Niobate. For the purpose of orienting the components to the optic chip to be described, the +Z crystal axis extends outward from the +Z face. An input waveguide formed in the top surface of the chip and orthogonal to the +Z axis receives an optical signal from an input port, passes the signal via a waveguide network, to an output waveguide coupling the waveguide network to an output port. Metalization is applied to the top face of the optic chip to form at least a first and a second rail. The first and second rails are positioned to very closely straddle a portion of the input waveguide. A conductive bridge connects the first and second rails to prevent a charge differential from developing between the first and second rails.
摘要:
An integrated optics chip includes an optical waveguide network formed on a surface of an electrooptically active material. The optical waveguide network has an input facet where an optical signal may be input to the optical waveguide network and an output facet where optical signals may be output from the optical waveguide network. One or more trenches is formed in the bottom surface of the surface and arranged to extend into the substrate toward the optical waveguide network to a depth of at least 70% of the thickness. The trenches prevent light rays incident thereon from inside the substrate from propagating to the output facet. In particular, the trenches prevent light scattered at the input facet or from scattering centers in the optical waveguide network from reflecting from the bottom surface of the substrate to the output facet. A cover may be mounted to the top surface of the substrate to provide structural strength to the integrated optics chip. The cover preferably extends substantially the entire length of the substrate. One or more side grooves may be formed in the sides of the substrate and cover. A light absorbing material may be placed in the trenches and grooves. An electrode pattern may be formed on the top surface of the substrate adjacent the optical waveguide network, and a plurality of access electrodes may be formed on sides of the substrate and cover to provide electrical signals to the electrodes.
摘要:
An optical waveguide is formed in an integrated optics chip that includes a substrate formed of an electrooptically active material. The optical waveguide network has an input facet where optical signals may be input to the optical waveguide network and an output facet where optical signals may be output from the optical waveguide network. A structure is located in an upper layer of the substrate to prevent surface waves that propagate in the substrate from cross coupling into the output facet.
摘要:
An optical waveguide network is formed in a substrate of an electrooptically active material. The optical waveguide has input and output facets where optical signals may be input to and output from the integrated optics chip. At least one lateral trench is formed in the substrate. The lateral trench is arranged to prevent light rays incident thereon from inside the substrate from propagating to the output facet. The lateral trench may be formed as a slot that extends toward the surface of the substrate where the optical waveguide network is formed, or the trench may be parallel to the plane of the optical waveguides. The trench may be formed in a surface that is either parallel or perpendicular to the plane of he optical waveguide network,