摘要:
The present invention relates to a method to improve the activity of engineered U7 snRNAs used in the context of RNA-based therapeutics; particularly in exon skipping, exon inclusion, and mRNA eradication strategies. The resulting modified U7 snRNAs are useful for treating neuromuscular diseases, in particular Duchenne neuromuscular dystrophy, myotonic dystrophy DM1 and spinal muscular atrophy.
摘要:
The present invention relates to a method to improve the activity of engineered U7 snRNAs used in the context of RNA-based therapeutics; particularly in exon skipping, exon inclusion, and mRNA eradication strategies. The resulting modified snRNAs are useful for treating neuromuscular diseases, in particular Duchenne neuromuscular dystrophy, myotonic dystrophy DM1 and spinal muscular atrophy.
摘要:
Provided are tricyclo-DNA (tc-DNA) AON and methods employing tc-DNA AON for modifying splicing events that occur during pre-mRNA processing. Tricyclo-DNA (tc-DNA) AON are described that may be used to facilitate exon skipping or to mask intronic silencer sequences and/or terminal stem-loop sequences during pre-mRNA processing and to target RNase-mediated destruction of processed mRNA. Tc-DNA AON described herein may be used in methods for the treatment of Duchenne Muscular Dystrophy by skipping a mutated exon 23 or exon 51 within a dystrophin gene to restore functionality of a dystrophin protein; in methods for the treatment of Spinal Muscular Atrophy by masking an intronic silencing sequence and/or a terminal stem-loop sequence within an SMN2 gene to yield modified functional SMN2 protein, including an amino acid sequence encoded by exon 7, which is capable of at least partially complementing a non-functional SMN1 protein; and in methods for the treatment of Steinert's Myotonic Dystrophy by targeting the destruction of a mutated DM1 mRNA comprising 3′-terminal CUG repeats.