Abstract:
A camera module for a vehicular vision system includes a housing that houses at least (i) electronic circuitry disposed at a main printed circuit board (PCB) and (ii) an imager assembly. The imager assembly includes an imager and an imager PCB. Electronic circuitry is disposed at an upper side and at a lower side of the main PCB. The lower side of the main PCB faces a lower housing portion and the upper side of the main PCB faces an upper housing portion. The imager assembly includes a flexible cable that connects electronic circuitry disposed at the imager PCB with electronic circuitry disposed at the main PCB. An electronic component of electronic circuitry disposed at the main PCB is in thermal conductivity with a thermal element, which is in thermal conductivity with the lower housing portion. The thermal element includes a thermally conductive resilient material.
Abstract:
A vehicle vision system includes a camera module configured to attach at an in-cabin surface of a windshield of a vehicle equipped with the vision system. The camera module includes a housing and an imager assembly. The imager assembly includes a structure and an imager and a lens. The imager is disposed at an imager circuit board of the imager assembly. A thermal element is configured to attach at the structure of the imager assembly and includes a support element and a thermal pad disposed at least partially along the support element. With the thermal element attached at the structure of the imager assembly, a first portion of the thermal pad is engaged with the imager circuit board, and wherein, with the imager assembly disposed at the housing of the camera module, a second portion of the thermal pad is engaged with the housing.
Abstract:
A vehicular vision system includes a camera module having a housing that houses at least (i) electronic circuitry disposed at a main printed circuit board (PCB) and (ii) an imager assembly. The imager assembly includes an imaging array sensor, an imager PCB and a lens holder that includes an elongated lens barrel that houses at least one lens. Electronic circuitry is disposed at an upper side and at a lower side of the main PCB. Image data captured by the imaging array sensor is conveyed to electronic circuitry disposed at the main PCB. An electronic component of electronic circuitry disposed at the main PCB is in thermal conductivity with a thermal element, which is in thermal conductivity with a lower housing portion of the housing to enhance heat transfer from the electronic component to the lower housing portion of the camera housing.
Abstract:
A camera module for a vehicular vision system includes a housing that houses at least (i) an imager assembly and (ii) electronic circuitry disposed at at least two printed circuit boards (PCBs). One of the electronic components of the electronic circuitry disposed at a first PCB includes an imager. A second PCB has electronic components of the electronic circuitry disposed at an upper side and at a lower side of the second PCB. The lower side of the second PCB opposes a lower housing portion and the upper side of the second PCB opposes an upper housing portion. The imager assembly includes a flexible cable that connects electronic components disposed at the first PCB with electronic components disposed at the second PCB. An electronic component is in thermal conductivity with a thermal element, which is in thermal conductivity with the housing.
Abstract:
A vehicular vision system includes a camera module having a housing that houses at least (i) electronic circuitry disposed at a main printed circuit board (PCB) and (ii) an imager assembly. The imager assembly includes an imaging array sensor, an imager PCB and a lens holder that includes an elongated lens barrel that houses at least one lens. Electronic circuitry is disposed at an upper side and at a lower side of the main PCB. Image data captured by the imaging array sensor is conveyed via a flexible cable to electronic circuitry disposed at the main PCB. An electronic component of electronic circuitry disposed at the main PCB is in thermal conductivity with a thermal element, which is in thermal conductivity with a lower housing portion of the housing to enhance heat transfer from the electronic component to the lower housing portion of the camera housing.
Abstract:
A vehicular vision system includes a camera module having a housing that houses at least (i) electronic circuitry disposed at a main printed circuit board (PCB) and (ii) an imager assembly. The imager assembly includes an imager, an imager PCB and a lens barrel. Electronic circuitry is disposed at an upper side and at a lower side of the main PCB. The lower side of the main PCB faces a lower housing portion and the upper side of the main PCB faces an upper housing portion. A flexible cable electrically connects electronic circuitry disposed at the imager PCB with electronic circuitry disposed at the main PCB. An electronic component of electronic circuitry disposed at the main PCB is in thermal conductivity with a thermal element, which is in thermal conductivity with the lower housing portion to enhance heat transfer from the electronic component to the lower housing portion.
Abstract:
A camera module for a vehicular vision system includes a housing that houses at least (i) electronic circuitry disposed at a main printed circuit board (PCB) and (ii) an imager assembly. The imager assembly includes an imager and an imager PCB. Electronic circuitry is disposed at an upper side and at a lower side of the main PCB. The lower side of the main PCB faces a lower housing portion and the upper side of the main PCB faces an upper housing portion. The imager assembly includes a flexible cable that connects electronic circuitry disposed at the imager PCB with electronic circuitry disposed at the main PCB. An electronic component of electronic circuitry disposed at the main PCB is in thermal conductivity with a thermal element, which is in thermal conductivity with the lower housing portion. The thermal element includes a thermally conductive resilient material.
Abstract:
A vehicular vision system includes a camera module having a housing that houses at least (i) electronic circuitry disposed at a main printed circuit board (PCB) and (ii) an imager assembly. The imager assembly includes an imaging array sensor, an imager PCB and a lens holder that includes an elongated lens barrel that houses at least one lens. Electronic circuitry is disposed at an upper side and at a lower side of the main PCB. Image data captured by the imaging array sensor is conveyed via a flexible cable to electronic circuitry disposed at the main PCB. An electronic component of electronic circuitry disposed at the main PCB is in thermal conductivity with a thermal element, which is in thermal conductivity with a lower housing portion of the housing to enhance heat transfer from the electronic component to the lower housing portion of the camera housing.
Abstract:
A vehicle vision system includes a camera module configured to attach at an in-cabin surface of a windshield of a vehicle equipped with the vision system. The camera module includes a housing and an imager assembly. The imager assembly includes a structure and an imager and a lens. The imager is disposed at an imager circuit board of the imager assembly. A thermal element is configured to attach at the structure of the imager assembly and includes a support element and a thermal pad disposed at least partially along the support element. With the thermal element attached at the structure of the imager assembly, a first portion of the thermal pad is engaged with the imager circuit board, and wherein, with the imager assembly disposed at the housing of the camera module, a second portion of the thermal pad is engaged with the housing.
Abstract:
A method of estimating a distance between a mobile unit and a vehicle includes providing a time of flight subsystem including circuitry incorporated in the mobile unit and circuitry incorporated in the vehicle, and generating a time of flight distance signal by periodically transmitting a time of flight signal between the mobile unit and the vehicle and measuring the time taken for transmission of the time of flight signal therebetween. A travel sensor is disposed at the mobile unit and generates a travel sensor signal. A value of a distance estimate signal is initialized based on the time of flight distance signal. A movement of the mobile unit is determined based on variance in the travel sensor signal. The initialized value of the initialized distance estimate signal is changed or increased or decreased based upon determination of movement of the mobile unit.