Abstract:
Apparatuses, mufti-memory systems, and methods for controlling data timing in a multi-memory system are disclosed. An example apparatus includes a plurality of memory units. In the example apparatus, a memory unit of the plurality of memory units includes a memory configured to provide associated read data to a data pipeline based on row control signals and column control signals. The memory unit further includes local control logic configured to provide the row control signals and the column control signals to the memory, and a configurable delay circuit coupled between the local control logic and the memory, the configured to delay receipt of the column control signals to the memory.
Abstract:
An apparatus may include a first data strobe (DQS) output buffer (OB), a second DQS OB and control logic. The first data strobe (DQS) output buffer (OB) and the second DQS OB are each coupled to a DQS terminal. The first DQS OB and the second DQS OB are configured to provide a DQS signal to the DQS terminal responsive to a read clock signal. The control logic is configured to receive the read clock signal to control the first DQS OB and the second DQS OB. The apparatus is configured to selectively prevent the control logic from receiving the read clock signal while the DQS signal is being provided to the DQS terminal.
Abstract:
An apparatus may include a first data strobe (DQS) output buffer (OB), a second DQS OB and control logic. The first data strobe (DQS) output buffer (OB) and the second DQS OB are each coupled to a DQS terminal. The first DQS OB and the second DQS OB are configured to provide a DQS signal to the DQS terminal responsive to a read clock signal. The control logic is configured to receive the read clock signal to control the first DQS OB and the second DQS OB. The apparatus is configured to selectively prevent the control logic from receiving the read clock signal while the DQS signal is being provided to the DQS terminal.
Abstract:
Apparatuses, multi-memory systems, and methods for controlling data timing in a multi-memory system are disclosed. An example apparatus includes a plurality of memory units. In the example apparatus, a memory unit of the plurality of memory units includes a memory configured to provide associated read data to a data pipeline based on row control signals and column control signals. The memory unit further includes local control logic configured to provide the row control signals and the column control signals to the memory, and a configurable delay circuit coupled between the local control logic and the memory, the configured to delay receipt of the column control signals to the memory.
Abstract:
Apparatuses, multi-memory systems, and methods for controlling data timing in a multi-memory system are disclosed. An example apparatus includes a plurality of memory units. In the example apparatus, a memory unit of the plurality of memory units includes a memory configured to provide associated read data to a data pipeline based on row control signals and column control signals. The memory unit further includes local control logic configured to provide the row control signals and the column control signals to the memory, and a configurable delay circuit coupled between the local control logic and the memory, the configure d to delay receipt of the column control signals to the memory.
Abstract:
Apparatuses, multi-memory systems, and methods for controlling data timing in a multi-memory system are disclosed. An example apparatus includes a plurality of memory units. In the example apparatus, a memory unit of the plurality of memory units includes a memory configured to provide associated read data to a data pipeline based on row control signals and column control signals. The memory unit further includes local control logic configured to provide the row control signals and the column control signals to the memory, and a configurable delay circuit coupled between the local control logic and the memory, the configured to delay receipt of the column control signals to the memory.
Abstract:
Apparatuses, multi-memory systems, and methods for controlling data timing in a multi-memory system are disclosed. An example apparatus includes a plurality of memory units. In the example apparatus, a memory unit of the plurality of memory units includes a memory configured to provide associated read data to a data pipeline based on row control signals and column control signals. The memory unit further includes local control logic configured to provide the row control signals and the column control signals to the memory, and a configurable delay circuit coupled between the local control logic and the memory, the configured to delay receipt of the column control signals to the memory.
Abstract:
Apparatuses, mufti-memory systems, and methods for controlling data timing in a multi-memory system are disclosed. An example apparatus includes a plurality of memory units. In the example apparatus, a memory unit of the plurality of memory units includes a memory configured to provide associated read data to a data pipeline based on row control signals and column control signals. The memory unit further includes local control logic configured to provide the row control signals and the column control signals to the memory, and a configurable delay circuit coupled between the local control logic and the memory, the configured to delay receipt of the column control signals to the memory.
Abstract:
Apparatuses, multi-memory systems, and methods for controlling data timing in a multi-memory system are disclosed. An example apparatus includes a plurality of memory units. In the example apparatus, a memory unit of the plurality of memory units includes a memory configured to provide associated read data to a data pipeline based on row control signals and column control signals. The memory unit further includes local control logic configured to provide the row control signals and the column control signals to the memory, and a configurable delay circuit coupled between the local control logic and the memory, the configured to delay receipt of the column control signals to the memory.
Abstract:
An apparatus may include a first data strobe (DQS) output buffer (OB), a second DQS OB and control logic. The first data strobe (DQS) output buffer (OB) and the second DQS OB are each coupled to a DQS terminal. The first DQS OB and the second DQS OB are configured to provide a DQS signal to the DQS terminal responsive to a read clock signal. The control logic is configured to receive the read clock signal to control the first DQS OB and the second DQS OB. The apparatus is configured to selectively prevent the control logic from receiving the read clock signal while the DQS signal is being provided to the DQS terminal.