MASK ELEMENT PRECURSOR AND RELIEF IMAGE-FORMING SYSTEM

    公开(公告)号:US20190258152A1

    公开(公告)日:2019-08-22

    申请号:US15898309

    申请日:2018-02-16

    摘要: An imageable material can be used to form a mask element that in turn is useful for providing relief images such as in flexographic printing plates. The imageable material has, in order: (a) a transparent polymeric carrier sheet; (b) a non-ablatable light-to-heat converting having an average dry thickness of 1-5 μm and comprising: (i) an infrared radiation absorbing material at 0.1-5 weight %; (ii) a thermally crosslinked organic polymeric binder material; and (iii) non-thermally ablatable particles having an average particle size of 0.1-20 μm in an amount of 0.2-10 weight %; and (c) a non-silver halide thermally-ablatable imaging layer (IL) disposed on the LTHC layer, the IL comprising a second infrared radiation absorbing material and a UV-light absorbing material dispersed within one or more thermally-ablatable polymeric binder materials.

    Relief image-forming method and assembly

    公开(公告)号:US10788746B2

    公开(公告)日:2020-09-29

    申请号:US15898391

    申请日:2018-02-16

    摘要: A relief image is prepared by: A) imaging an imageable material to form a mask element; B) exposing a relief-forming precursor through the mask element; C) removing the mask element; and D) developing the imaged relief-forming precursor. The imageable material has, in order: (a) a transparent polymeric carrier sheet; (b) a non-ablatable light-to-heat converting having an average dry thickness of 1-5 μm and comprising: (i) an infrared radiation absorbing material at 0.1-5 weight %; (ii) a thermally crosslinked organic polymeric binder material; and (iii) non-thermally ablatable particles having an average particle size of 0.1-20 μm in an amount of 0.2-10 weight %; and (c) a non-silver halide thermally-ablatable imaging layer (IL) disposed on the LTHC layer, the IL comprising a second infrared radiation absorbing material and a UV-light absorbing material dispersed within one or more thermally-ablatable polymeric binder materials. The imageable material can be included in a relief image-forming assembly.

    RELIEF IMAGE-FORMING METHOD AND ASSEMBLY
    3.
    发明申请

    公开(公告)号:US20190258154A1

    公开(公告)日:2019-08-22

    申请号:US15898391

    申请日:2018-02-16

    摘要: A relief image is prepared by: A) imaging an imageable material to form a mask element; B) exposing a relief-forming precursor through the mask element; C) removing the mask element; and D) developing the imaged relief-forming precursor. The imageable material has, in order: (a) a transparent polymeric carrier sheet; (b) a non-ablatable light-to-heat converting having an average dry thickness of 1-5 μm and comprising: (i) an infrared radiation absorbing material at 0.1-5 weight %; (ii) a thermally crosslinked organic polymeric binder material; and (iii) non-thermally ablatable particles having an average particle size of 0.1-20 μm in an amount of 0.2-10 weight %; and (c) a non-silver halide thermally-ablatable imaging layer (IL) disposed on the LTHC layer, the IL comprising a second infrared radiation absorbing material and a UV-light absorbing material dispersed within one or more thermally-ablatable polymeric binder materials. The imageable material can be included in a relief image-forming assembly.

    Mask element precursor and relief image-forming system

    公开(公告)号:US10768520B2

    公开(公告)日:2020-09-08

    申请号:US15898309

    申请日:2018-02-16

    摘要: An imageable material can be used to form a mask element that in turn is useful for providing relief images such as in flexographic printing plates. The imageable material has, in order: (a) a transparent polymeric carrier sheet; (b) a non-ablatable light-to-heat converting having an average dry thickness of 1-5 μm and comprising: (i) an infrared radiation absorbing material at 0.1-5 weight %; (ii) a thermally crosslinked organic polymeric binder material; and (iii) non-thermally ablatable particles having an average particle size of 0.1-20 μm in an amount of 0.2-10 weight %; and (c) a non-silver halide thermally-ablatable imaging layer (IL) disposed on the LTHC layer, the IL comprising a second infrared radiation absorbing material and a UV-light absorbing material dispersed within one or more thermally-ablatable polymeric binder materials.