摘要:
Included are an ammonia synthesis column that synthesizes ammonia from a raw material gas, a discharge line that discharges a synthetic gas, a water-cooled cooler that cools the synthetic gas with a coolant, disposed in the discharge line, an ammonia separator into which a synthetic gas after cooling is introduced and which separates the ammonia gas and a liquid ammonia from each other, a raw material return line that returns a raw material gas containing the separated ammonia gas to the ammonia synthesis column side as a return raw material gas, and a compressor that compresses the return raw material gas, disposed in the raw material return line. An ammonia concentration in the return raw material gas is 5 mol % or more, and an ammonia synthesis catalyst that synthesizes the ammonia gas in the ammonia synthesis column is a ruthenium catalyst.
摘要:
The present invention includes a dehydration method comprising the steps of providing a distilled process-target fluid to a water separation membrane device via a heat exchanger; separating the process-target fluid into a dehydrated product and water by using the water separation membrane device; detecting a temperature of any one of the water separation membrane device and the process-target fluid supplied to the water separation membrane device by using a temperature monitoring device; and controlling the temperature of the process-target fluid so that the temperature of the distilled process-target fluid being maintained at a temperature higher than the condensation temperature of the distillate by 5 to 10° C. by using a temperature adjustment device provided in the water separation membrane device.
摘要:
The present invention includes a dehydration method comprising the steps of providing a distilled process-target fluid to a water separation membrane device via a heat exchanger; separating the process-target fluid into a dehydrated product and water by using the water separation membrane device; detecting a temperature of any one of the water separation membrane device and the process-target fluid supplied to the water separation membrane device by using a temperature monitoring device; and controlling the temperature of the process-target fluid so that the temperature of the distilled process-target fluid being maintained at a temperature higher than the condensation temperature of the distillate by 5 to 10° C. by using a temperature adjustment device provided in the water separation membrane device.
摘要:
Included are an ammonia synthesis column that synthesizes ammonia from a raw material gas, a discharge line that discharges a synthetic gas, a water-cooled cooler that cools the synthetic gas with a coolant, disposed in the discharge line, an ammonia separator into which a synthetic gas after cooling is introduced and which separates the ammonia gas and a liquid ammonia from each other, a raw material return line that returns a raw material gas containing the separated ammonia gas to the ammonia synthesis column side as a return raw material gas, and a compressor that compresses the return raw material gas, disposed in the raw material return line. An ammonia concentration in the return raw material gas is 5 mol % or more, and an ammonia synthesis catalyst that synthesizes the ammonia gas in the ammonia synthesis column is a ruthenium catalyst.
摘要:
A reforming device according to the present invention has a compressor, a first heat exchanger, a desulfurization device, a reformer, a raw material gas branching line that extracts a compressed natural gas from a downstream side of the desulfurization device with respect to the flow direction of the natural gas and supplies the natural gas to the reformer, and a flue gas discharging line that discharges a flue gas generated in the reformer, wherein the first heat exchanger is provided in the flue gas discharging line, and the flue gas is used as a heating medium of the compressed natural gas.
摘要:
A reforming device (10) according to the present invention has a compressor (11), a first heat exchanger (12), a desulfurization device (13), a reformer (14), a raw material gas branching line (L11) that extracts a compressed natural gas (21) from a downstream side of the desulfurization device (13) with respect to the flow direction of the natural gas (21) and supplies the natural gas (21) to the reformer (14), and a flue gas discharging line (L12) that discharges a flue gas (22) generated in the reformer (14), wherein the first heat exchanger (12) is provided in the flue gas discharging line (L12), and the flue gas (22) is used as a heating medium of the compressed natural gas (21).
摘要:
A reforming device according to the present invention has a compressor, a first heat exchanger, a desulfurization device, a reformer, a raw material gas branching line that extracts a compressed natural gas from a downstream side of the desulfurization device with respect to the flow direction of the natural gas and supplies the natural gas to the reformer, and a flue gas discharging line that discharges a flue gas generated in the reformer, wherein the first heat exchanger is provided in the flue gas discharging line, and the flue gas is used as a heating medium of the compressed natural gas.
摘要:
A reforming device (10) according to the present invention has a compressor (11), a first heat exchanger (12), a desulfurization device (13), a reformer (14), a raw material gas branching line (L11) that extracts a compressed natural gas (21) from a downstream side of the desulfurization device (13) with respect to the flow direction of the natural gas (21) and supplies the natural gas (21) to the reformer (14), and a flue gas discharging line (L12) that discharges a flue gas (22) generated in the reformer (14), wherein the first heat exchanger (12) is provided in the flue gas discharging line (L12), and the flue gas (22) is used as a heating medium of the compressed natural gas (21).
摘要:
The present invention includes a dehydration method comprising the steps of providing a distilled process-target fluid to a water separation membrane device via a heat exchanger; separating the process-target fluid into a dehydrated product and water by using the water separation membrane device; detecting a temperature of any one of the water separation membrane device and the process-target fluid supplied to the water separation membrane device by using a temperature monitoring device; and controlling the temperature of the process-target fluid so that the temperature of the distilled process-target fluid being maintained at a temperature higher than the condensation temperature of the distillate by 5 to 10° C. by using a temperature adjustment device provided in the water separation membrane device.