摘要:
In a method of producing a grain-oriented electrical steel sheet by hot-rolling a steel slab of a chemical composition containing C: 0.001˜0.10%, Si: 1.0˜5.0%, Mn: 0.01˜1.0%, at least one of S and Se: 0.01˜0.05% in total, sol. Al: 0.003˜0.050%, N: 0.001˜0.020% by mass, subjecting to cold rolling, a primary recrystallization annealing, application of an annealing separator mainly composed of MgO and a finish annealing, a temperature rising rate S1 between 500˜600° C. in the primary recrystallization annealing is made to not less than 100° C./s and a temperature rising rate S2 between 600˜700° C. is made to 30° C./s˜0.6×S1° C./s, while a total content W (mol %) of an element having an ionic radius of 0.6˜1.3 Å and an attracting force between the ion and oxygen of not more than 0.7 Å−2 included in the annealing separator to MgO is adjusted to satisfy 0.01S2-5.5≦Ln (W)≦0.01S2−4.3 to produce a grain-oriented electrical steel sheet having excellent iron loss properties and coating properties.
摘要:
In a method of producing a grain-oriented electrical steel sheet by subjecting a coil for grain-oriented electrical steel sheet after cold rolling to a primary recrystallization annealing, applying an annealing separator thereon, and conducting final annealing, rapid heating is conducted at a rate of not less than 80° C./sec from 500° C. to 700° C. in the course of heating for the primary recrystallization annealing, and a temperature keeping treatment is conducted for 2 to 100 hours from 700° C. to 1000° C. in the course of heating for the final annealing, and further, the final annealing is preferably conducted by laying a thermal insulation material on an upper surface of a coil supporting stand in an annealing furnace used for the final annealing concentrically from the outer periphery of the coil supporting stand and over an area of not less than 20% of the radius of the coil supporting stand.
摘要:
In a method of producing a grain-oriented electrical steel sheet by subjecting a coil for grain-oriented electrical steel sheet after cold rolling to a primary recrystallization annealing, applying an annealing separator thereon, and conducting final annealing, rapid heating is conducted at a rate of not less than 80° C./sec from 500° C. to 700° C. in the course of heating for the primary recrystallization annealing, and a temperature keeping treatment is conducted for 2 to 100 hours from 700° C. to 1000° C. in the course of heating for the final annealing, and further, the final annealing is preferably conducted by laying a thermal insulation material on an upper surface of a coil supporting stand in an annealing furnace used for the final annealing concentrically from the outer periphery of the coil supporting stand and over an area of not less than 20% of the radius of the coil supporting stand.
摘要:
In a method of producing a grain-oriented electrical steel sheet by hot-rolling a steel slab of a chemical composition containing C: 0.001˜0.10%, Si: 1.0˜5.0%, Mn: 0.01˜1.0%, at least one of S and Se: 0.01˜0.05% in total, sol. Al: 0.003˜0.050%, N: 0.001˜0.020% by mass, subjecting to cold rolling, a primary recrystallization annealing, application of an annealing separator mainly composed of MgO and a finish annealing, a temperature rising rate S1 between 500˜600° C. in the primary recrystallization annealing is made to not less than 100° C./s and a temperature rising rate S2 between 600˜700° C. is made to 30° C./s˜0.6×S1° C./s, while a total content W (mol %) of an element having an ionic radius of 0.6˜1.3 Å and an attracting force between the ion and oxygen of not more than 0.7 Å−2 included in the annealing separator to MgO is adjusted to satisfy 0.01S2−5.5≦Ln (W)≦0.01S2−4.3 to produce a grain-oriented electrical steel sheet having excellent iron loss properties and coating properties.
摘要:
Method of making a grain oriented electromagnetic steel sheet having excellent magnetic properties, by a series of steps ranging from hot rolling to final finishing annealing for a silicon steel slab containing from about 0.001 to 0.07 wt % bismuth, wherein the average cooling rate for about five seconds measured immediately after the end of hot rolling is controlled within a range of from about 30 to 120° C./second; the value of the ratio PH2O/PH2 of the atmosphere for the soaking step in decarburization annealing is adjusted within a range of from about 0.45 to 0.70; and a treatment is provided for inhibiting decomposition of the surface inhibitor during final finishing annealing.
摘要翻译:通过从含有约0.001〜0.07重量%的铋的硅钢板的热轧至最终精加工退火的一系列步骤制造具有优异磁特性的晶粒取向电磁钢板的方法,其中平均冷却速度为约5 在热轧结束后立即测量的秒控制在约30至120℃/秒的范围内; 将脱碳退火中的浸渍工序的气氛的比例PH 2 O / PH 2的值调整为约0.45〜0.70的范围; 并且提供了用于在最终精加工退火期间抑制表面抑制剂的分解的处理。
摘要:
A method of producing a grain oriented silicon steel thin sheet having excellent magnetic properties. A silicon steel slab containing Cu, Se and Sb as inhibitor-forming elements is hot rolled to form a hot-rolled sheet, followed by cold rolling at least twice including intermediate annealing to form a cold-rolled sheet having a final thickness of about 0.10 to 0.25 mm, decarburization and primary recrystallization annealing, and then final finish annealing. The temperature of the material to be rolled on the inlet side of the hot finish rolling mill is about 1000.degree. to 1150.degree. C. the surface temperature of the work rolls of the first stand of the hot finish rolling mill immediately before contact with the material to be rolled is about 100.degree. C. or less the total rolling reduction of the hot finish rolling is about 93 to 97%, the intermediate annealing is effected at a temperature of about 900.degree. to 1050.degree. C. within a time of about 50 seconds, and the rolling reduction of the final cold rolling is about 50 to 80%.
摘要:
A grain oriented electrical steel sheet reduces local exfoliation of insulating coating films and thus has excellent corrosion resistance and insulation properties. The grain oriented electrical steel sheet may be obtained by, assuming that a1 (μm) is a film thickness of the insulating coating at the floors of linear grooves and a2 (μm) is a film thickness of the insulating coating on a surface of the steel sheet at portions other than the linear grooves, controlling a1 and a2 to satisfy the following formulas (1) and (2): 0.3 μm≤a2≤3.5 μm (1), and a1/a2≤2.5 (2).
摘要:
A grain oriented electrical steel sheet reduces local exfoliation of insulating coating films and thus has excellent corrosion resistance and insulation properties. The grain oriented electrical steel sheet may be obtained by, assuming that a1 (μm) is a film thickness of the insulating coating at the floors of linear grooves and a2 (μm) is a film thickness of the insulating coating on a surface of the steel sheet at portions other than the linear grooves, controlling a1 and a2 to satisfy the following formulas (1) and (2): 0.3 μm≦a2≦3.5 μm (1), and a1/a2≦2.5 (2).
摘要:
A grain oriented electrical steel sheet keeps iron loss at a low level when assembled as an actual transformer and has excellent iron loss properties as an actual transformer, in which a film thickness a1 (μm) of insulating coating at the floors of linear grooves, a film thickness a2 (μm) of the insulating coating on a surface of the steel sheet at portions other than the linear grooves, and a depth a3 (μm) of the linear grooves are controlled to satisfy formulas (1) and (2): 0.3 μm≦a2≦3.5 μm (1), and a2+a3−a1≦15 μm (2).
摘要:
The present invention provides a method for manufacturing a grain oriented electrical steel sheet, including preparing as a material a steel slab having a predetermined composition and carrying out at least two cold rolling operations, characterized in that a thermal treatment is carried out, prior to any one of cold rolling operations other than final cold rolling, at temperature in the range of 500° C. to 750° C. for a period in the range of 10 minutes to 480 hours. The grain oriented electrical steel sheet of the present invention exhibits through utilization of austenite-ferrite transformation superior magnetic properties after secondary recrystallization.