摘要:
A grain oriented electrical steel sheet reduces local exfoliation of insulating coating films and thus has excellent corrosion resistance and insulation properties. The grain oriented electrical steel sheet may be obtained by, assuming that a1 (μm) is a film thickness of the insulating coating at the floors of linear grooves and a2 (μm) is a film thickness of the insulating coating on a surface of the steel sheet at portions other than the linear grooves, controlling a1 and a2 to satisfy the following formulas (1) and (2): 0.3 μm≤a2≤3.5 μm (1), and a1/a2≤2.5 (2).
摘要:
A grain oriented electrical steel sheet reduces local exfoliation of insulating coating films and thus has excellent corrosion resistance and insulation properties. The grain oriented electrical steel sheet may be obtained by, assuming that a1 (μm) is a film thickness of the insulating coating at the floors of linear grooves and a2 (μm) is a film thickness of the insulating coating on a surface of the steel sheet at portions other than the linear grooves, controlling a1 and a2 to satisfy the following formulas (1) and (2): 0.3 μm≦a2≦3.5 μm (1), and a1/a2≦2.5 (2).
摘要:
A grain oriented electrical steel sheet keeps iron loss at a low level when assembled as an actual transformer and has excellent iron loss properties as an actual transformer, in which a film thickness a1 (μm) of insulating coating at the floors of linear grooves, a film thickness a2 (μm) of the insulating coating on a surface of the steel sheet at portions other than the linear grooves, and a depth a3 (μm) of the linear grooves are controlled to satisfy formulas (1) and (2): 0.3 μm≦a2≦3.5 μm (1), and a2+a3−a1≦15 μm (2).
摘要:
A grain oriented electrical steel sheet has thickness of forsterite film at bottom portions of grooves formed on a surface of the steel sheet is ≧0.3 μm, groove frequency is ≦20%, abundance ratio of grooves crystal grains directly beneath themselves, each crystal grain having orientation deviating from Goss orientation by ≧10° and grain size ≧5 μm, total tension exerted on the steel sheet in the rolling direction by the forsterite film and tension coating is ≧10.0 MPa, total tension exerted on the steel sheet in a direction perpendicular to the rolling direction by the forsterite film and tension coating is ≧5.0 MPa and total tension satisfies 1.0≦A/B≦5.0, where A is total tension exerted in rolling direction by forsterite film and tension coating, and B is total tension exerted in direction perpendicular to rolling direction by forsterite film and tension coating.
摘要:
A device reduces dust for safely preventing laser-irradiation capacity from decreasing due to contamination and reliably reducing iron loss of a grain oriented electrical steel sheet. The device improves iron loss properties of a grain oriented electrical steel sheet by irradiating its surface with laser to reduce iron loss, wherein, distance between a laser beam emission port and a laser irradiation point is L (mm); laser irradiation angle formed by a line linking the emission port and the irradiation point with respect to a direction vertical to the sheet is θ (°); and L≧50, the emission port is positioned such that L and θ satisfy: 60−0.3L≦θ≦60 when L≦100; 40−0.1L≦θ≦60 when 100 400.
摘要:
A grain oriented electrical steel sheet has thermal strain introduced thereinto in a dotted-line arrangement in which strain-imparted areas are lined in a direction that crosses a rolling direction of the steel sheet, wherein the strain-imparted areas introduced in the dotted-line arrangement have a size from 0.10 mm or more to 0.50 mm or less and an interval between the adjacent strain-imparted areas is from 0.10 mm or more to 0.60 mm or less.
摘要:
A grain oriented electrical steel sheet has linear grooves for magnetic domain refinement formed on a surface thereof and may reduce iron loss by using these linear grooves, where the proportion of those linear grooves having crystal grains directly beneath themselves, each crystal grain having an orientation deviating from the Goss orientation by 10° or more and a grain size of 5 μm or more, is controlled to 20% or less, and secondary recrystallized grains are controlled to have an average β angle of 2.0° or less, and each secondary recrystallized grain having a grain size of 10 mm or more is controlled to have an average β-angle variation of 1° to 4°.
摘要:
A grain oriented electrical steel sheet may reduce iron loss of material with linear grooves formed thereon for magnetic domain refinement and offer excellent low iron loss properties when assembled as an actual transformer, where the steel sheet has sheet thickness of 0.30 mm or less, linear grooves are formed at intervals of 2-10 mm in the rolling direction, the depth of each of the linear grooves is 10 μm or more, the thickness of the forsterite film at bottom portions of the linear grooves is 0.3 μm or more, total tension applied to the steel sheet by the forsterite film and tension coating is 10.0 MPa or higher in rolling direction, and the proportion of eddy current loss in iron loss W17/50 of the steel sheet is 65% or less when alternating magnetic field of 1.7 T and 50 Hz is applied to the steel sheet in the rolling direction.
摘要:
A method of manufacturing a grain-oriented steel sheet including hot-rolling a slab prepared using molten steel containing, by mass %, C of not more than about 0.08%, Si of about 2.0 to about 8.0% and Mn of about 0.005 to about 3.0%; optionally annealing the hot-rolled steel sheet; performing cold rolling once, or twice or more with intermediate annealing therebetween; performing primary recrystallization annealing in a low- or non-oxidizative atmosphere and adjusting the C content in the steel sheet after primary recrystallization annealing to be held in the range of about 0.005 to about 0.025 mass %; performing secondary recrystallization annealing; decarburization annealing; and, preferably, performing additional high-temperature continuous or batch annealing. A grain-oriented electrical steel sheet having a sufficiently high magnetic flux density and a low iron loss can be advantageously obtained even when it is manufactured without using an inhibitor.
摘要:
A method and apparatus for manufacturing a thin amorphous metal strip. Molten metal is injected onto a single cooling roll rotating at high speed. A gas flow impeding wall is disposed adjacent to the surface of a cooling roll and extends across the body of the cooling roll. The wall is located upstream of the molten metal injection nozzle. CO.sub.2 gas is jetted along one surface of the gas insulating wall which faces the molten metal injection nozzle and toward the surface of the cooling roll. An atmosphere rich in CO.sub.2 gas is maintained adjacent the roll surface just upstream of the molten metal injection nozzle.
摘要翻译:一种用于制造薄无定形金属条的方法和装置。 将熔融金属注入到以高速旋转的单个冷却辊上。 气体阻流壁邻近冷却辊的表面设置并延伸穿过冷却辊的主体。 该壁位于熔融金属注射喷嘴的上游。 CO 2气体沿着与熔融金属注入喷嘴相对的气体绝缘壁的一个表面朝向冷却辊的表面喷射。 在熔融金属注入喷嘴正上游的辊表面附近保持富含CO 2气体的气氛。