摘要:
The estimation of an HRTF for a given individual is accomplished by means of a coupled model, which identifies the dependencies between one or more images of readily observable characteristics of an individual, and the HRTF that is applicable to that individual. Since the HRTF is highly influenced by the shape of the listener's outer ear, as well as the shape of the listener's head, images of a listener which provides this type of information are preferably applied as an input to the coupled model. In addition, dimensional measurements of the listener can be applied to the model. In return, the model provides an estimate of the HRTF for the observed characteristics of the listener.
摘要:
The identification of hidden data, such as feature-based control points in an image, from a set of observable data, such as the image, is achieved through a two-stage approach. The first stage involves a learning process, in which a number of sample data sets, e.g. images, are analyzed to identify the correspondence between observable data, such as visual aspects of the image, and the desired hidden data, such as the control points. Two models are created. A feature appearance-only model is created from aligned examples of the feature in the observed data. In addition, each labeled data set is processed to generate a coupled model of the aligned observed data and the associated hidden data. In the second stage of the process, the modeled feature is located in an unmarked, unaligned data set, using the feature appearance-only model. This location is used as an alignment point and the coupled model is then applied to the aligned data, giving an estimate of the hidden data values for that data set.
摘要:
The estimation of an HRTF for a given individual is accomplished by means of a coupled model, which identifies the dependencies between one or more images of readily observable characteristics of an individual, and the HRTF that is applicable to that individual. Since the HRTF is highly influenced by the shape of the listener's outer ear, as well as the shape of the listener's head, images of a listener which provides this type of information are preferably applied as an input to the coupled model. In addition, dimensional measurements of the listener can be applied to the model. In return, the model provides an estimate of the HRTF for the observed characteristics of the listener.
摘要:
The estimation of an HRTF for a given individual is accomplished by means of a coupled model, which identifies the dependencies between one or more images of readily observable characteristics of an individual, and the HRTF that is applicable to that individual. Since the HRTF is highly influenced by the shape of the listener's outer ear, as well as the shape of the listener's head, images of a listener which provides this type of information are preferably applied as an input to the coupled model. In addition, dimensional measurements of the listener can be applied to the model. In return, the model provides an estimate of the HRTF for the observed characteristics of the listener.
摘要:
The identification of hidden data, such as feature-based control points in an image, from a set of observable data, such as the image, is achieved through a two-stage approach. The first stage involves a learning process, in which a number of sample data sets, e.g. images, are analyzed to identify the correspondence between observable data, such as visual aspects of the image, and the desired hidden data, such as the control points. Two models are created. A feature appearance-only model is created from aligned examples of the feature in the observed data. In addition, each labeled data set is processed to generate a coupled model of the aligned observed data and the associated hidden data. In the second stage of the process, the modeled feature is located in an unmarked, unaligned data set, using the feature appearance-only model. This location is used as an alignment point and the coupled model is then applied to the aligned data, giving an estimate of the hidden data values for that data set.
摘要:
A data-compressed audio waveform is temporally modified without requiring complete decompression of the audio signal. Packets of compressed audio data are first unpacked, to remove scaling that was applied in the formation of the packets. The unpacked data is then temporally modified, using one of a number of different approaches. This modification takes place while the audio information remains in a data-compressed format. New packets are then assembled from the modified data, to produce a data-compressed output stream that can be subsequently processed in a conventional manner to reproduce the desired sound. The assembly of the new packets employs a technique for inferring an auditory model from the original packets, to requantize the data in the output packets.
摘要:
A data-compressed audio waveform is temporally modified without requiring complete decompression of the audio signal. Packets of compressed audio data are first unpacked, to remove scaling that was applied in the formation of the packets. The unpacked data is then temporally modified, using one of a number of different approaches. This modification takes place while the audio information remains in a data-compressed format. New packets are then assembled from the modified data, to produce a data-compressed output stream that can be subsequently processed in a conventional manner to reproduce the desired sound. The assembly of the new packets employs a technique for inferring an auditory model from the original packets, to requantize the data in the output packets.
摘要:
Software for initialized explore-exploit creates a plurality of probability distributions. Each of these probability distributions is generated by inputting a quantitative description of one or more features associated with an image into a regression model that outputs a probability distribution for a measure of engagingness for the image. Each of the images is conceptually related to the other images. The software uses the plurality of probability distributions to initialize a multi-armed bandit model that outputs a serving scheme for each of the images. Then the software serves a plurality of the images on a web page displaying search results, based at least in part on the serving scheme.
摘要:
A method for displaying interactive advertisements on a television having a controller connected thereto and configured for receiving input from a viewer of the television is disclosed. The controller has a receiver operable to receive advertisements and a processor operable to modify the advertisements. The method generally comprises requesting action by the viewer of the television, modifying an advertisement based on the action of the viewer, and displaying the modified advertisement on the television.
摘要:
The systems and methods described create a mathematical representation of each of the media objects for which user ratings are known. The mathematical representations take into account the subjective rating value assigned by a user to the respective media object and the user that assigned the rating value. The media object with the mathematical representation closest to that of the seed media object is then selected as the most similar media object to the seed media object. In an embodiment, the mathematical representation is a vector representation in which each user is a different dimension and each user's rating value is the magnitude of the vector in that dimension. Similarity between two songs is determined by identifying the closest vectors to that of the seed song. Closeness may be determined by subtracting or by calculating the dot product of each of the vectors with that of the seed media object.