Abstract:
The present invention improves characteristics of a tag antenna for RFID with a ceramic material exhibiting characteristics of a relaxor ferroelectric substance. More specifically, the present invention relates to an RFID tag that is formed of a relaxor ferroelectric substance having a dielectric constant of 3,000 or more and comprising a non-lead based oxide to have an expanded usage, and to exhibit improved orientation by forming the non-lead based relaxor ferroelectric substance in a planar disc or other shapes by a general dry-forming method or by forming the non-lead based relaxor ferroelectric substance in various shapes by powder injection molding.
Abstract:
Disclosed is a fluorescent lamp having ceramic-glass composite electrodes, which has a higher dielectric constant, higher secondary electron emission, and higher polarization under the same electric field, and thus enables the movement of many more electrons and cations, resulting in high brightness. The fluorescent lamp having ceramic-glass composite electrodes includes a glass tube, which has a phosphor applied on the inner surface thereof and is filled with a mixture of inert gas and metal vapor, both ends of which are sealed; and hollow cylindrical electrodes provided at both ends of the glass tube, each of the hollow cylindrical electrodes having a stepped portion between a central portion thereof and an end portion thereof, and being formed of a ceramic-glass composite. As the material for the electrode, a composite, including a CaO—MgO—SrO—ZrO2—TiO2 ceramic composition and glass frit, is used.
Abstract:
A piezoelectric linear motor for providing enhanced displacement using a dome-shaped piezoelectric ceramic is provided. The piezoelectric linear motor includes a dome-shaped piezoelectric ceramic (100) processed such that different electrodes are formed on opposite surfaces of the piezoelectric ceramic. A vibration shaft (200) is fixed to a first surface of the piezoelectric ceramic so that the vibration shaft moves in conjunction with displacement of the piezoelectric ceramic. A movable element (300) is linearly driven through friction with the vibration shaft while coming into contact with the vibration shaft. The movable element moves in a movement direction of the vibration shaft if the inertial force of the movable element is less than the frictional force between the movable element and the vibration shaft when the vibration shaft moves. According to the present invention, the piezoelectric ceramic is formed in a dome shape, so that movement displacement is enhanced.
Abstract:
Disclosed is a fluorescent lamp having ceramic-glass composite electrodes, which has a higher dielectric constant, higher secondary electron emission, and higher polarization under the same electric field, and thus enables the movement of many more electrons and cations, resulting in high brightness. The fluorescent lamp having ceramic-glass composite electrodes includes a glass tube, which has a phosphor applied on the inner surface thereof and is filled with a mixture of inert gas and metal vapor, both ends of which are sealed; and hollow cylindrical electrodes provided at both ends of the glass tube, each of the hollow cylindrical electrodes having a stepped portion between a central portion thereof and an end portion thereof, and being formed of a ceramic-glass composite. As the material for the electrode, a composite, including a CaO—MgO—SrO—ZrO2—TiO2 ceramic composition and glass frit, is used.
Abstract:
The present invention relates to a dome-shaped piezoelectric linear motor, and provides a piezoelectric linear motor having enhanced displacement using dome-shaped piezoelectric ceramic. A dome-shaped piezoelectric linear motor (DSPLM) comprises: a dome-shaped piezoelectric ceramic actuator which has two surfaces applied with different electrodes; a bar-shaped vibration shaft which is vertically fixed at the apex of the dome-shaped piezoelectric ceramic actuator; a cylinder-shaped mobile element which is inserted into the vibration shaft and moves linearly along the vibration shaft; and a ceramic restraining element which is fixed at a lower edge portion of the dome-shaped piezoelectric ceramic actuator. Therefore, the vibration displacement in the direction of the vibration shaft is increased when compared to the vibration displacement in the thickness direction of planar piezoelectric ceramic.
Abstract:
A piezoelectric linear motor for providing enhanced displacement using a dome-shaped piezoelectric ceramic is provided. The piezoelectric linear motor includes a dome-shaped piezoelectric ceramic (100) processed such that different electrodes are formed on opposite surfaces of the piezoelectric ceramic. A vibration shaft (200) is fixed to a first surface of the piezoelectric ceramic so that the vibration shaft moves in conjunction with displacement of the piezoelectric ceramic. A movable element (300) is linearly driven through friction with the vibration shaft while coming into contact with the vibration shaft. The movable element moves in a movement direction of the vibration shaft if the inertial force of the movable element is less than the frictional force between the movable element and the vibration shaft when the vibration shaft moves. According to the present invention, the piezoelectric ceramic is formed in a dome shape, so that movement displacement is enhanced.