摘要:
A blanking scheme for mitigating impulsive noise in wireless networks is based on the signal-to-noise ratio (SNR) of symbols. To fully gain the benefits of the SNR-based blanking scheme, two methods are developed, namely a multi-level thresholding scheme in the time-, spatial- and frequency-domains, and a weighted-input error-correction decoding. The symbols are conditioned as a function of the estimated SNR in time-, frequency-, or spatial-domains or combinations therefore, and the conditioning is applied to an amplitude, phase, or energy level, or combinations thereof.
摘要:
A blanking scheme for mitigating impulsive noise in wireless networks is based on the signal-to-noise ratio (SNR) of symbols. To fully gain the benefits of the SNR-based blanking scheme, two methods are developed, namely a multi-level thresholding scheme in the time-, spatial- and frequency-domains, and a weighted-input error-correction decoding. The symbols are conditioned as a function of the estimated SNR in time-, frequency-, or spatial-domains or combinations therefore, and the conditioning is applied to an amplitude, phase, or energy level, or combinations thereof.
摘要:
A method allocates bandwidth to channels in an orthogonal frequency division multiple access and time division multiple access (TDMA) network. The network includes a master device (master) communicating with a set of slave devices (slaves). The master defines a set Ψm of logical indices ν of a set of N physical subcarriers for a set of M data streams to be allocated to a set of Nd logical data subcarriers according to Ψm={ν|ν=iM+m, i=0,1,2, . . . , d−1}, where d=Nd/M. The set of N data subcarriers is mapped to the set of Nd logical subcarriers according to the logical indices, and the data subcarriers are allocated to the logical subcarriers.
摘要:
In an oversampled orthogonal frequency-division multiplexing (OFDM) orthogonal network, the preamble used for time synchronization does not have an ideal autocorrelation function due to guard bands, which degrade the accuracy of symbol timing. Therefore, a zero-correlation-zone (ZCZ) based preamble is used for time synchronization. Across correlation function (CCF) used for time synchronization is forced to 0 within a certain region around a main lobe. The length of the ZCZ is guaranteed to be larger than a cyclic prefix length of OFDM data symbols synchronization accuracy.
摘要:
In an oversampled orthogonal frequency-division multiplexing (OFDM) orthogonal network, the preamble used for time synchronization does not have an ideal autocorrelation function due to guard bands, which degrade the accuracy of symbol timing. Therefore, a zero-correlation-zone (ZCZ) based preamble is used for time synchronization. Across correlation function (CCF) used for time synchronization is forced to 0 within a certain region around a main lobe. The length of the ZCZ is guaranteed to be larger than a cyclic prefix length of OFDM data symbols synchronization accuracy.
摘要:
Embodiments of the invention disclose a system configured to exchange energy wirelessly. The system includes a structure configured to exchange the energy wirelessly via a coupling of evanescent waves, wherein the structure is electromagnetic (EM) and non-radiative, and wherein the structure generates an EM near-field in response to receiving the energy; and a negative index material (NIM) arranged within the EM near-field such that the coupling is enhanced.
摘要:
A method allocates bandwidth to channels in an orthogonal frequency division multiple access and time division multiple access (TDMA) network. The network includes a master device (master) communicating with a set of slave devices (slaves). The master defines a set Ψm of logical indices ν of a set of N physical subcarriers for a set of M data streams to be allocated to a set of Nd logical data subcarriers according to Ψm={ν|ν=iM+m, i=0,1,2, . . . , d−1}, where d=Nd/M. The set of N data subcarriers is mapped to the set of Nd logical subcarriers according to the logical indices, and the data subcarriers are allocated to the logical subcarriers.
摘要:
A hybrid communication network for a transportation safety system includes a fixed wired nodes and mobile wireless nodes. Because the wired nodes operate independently packets transmitted by the wired nodes to the wireless nodes need to be synchronized. A downlink travel time for downlink packets traveling from a controller to the wireless nodes is determined. Then, the controller schedules downlink data intervals (DDI) based on the downlink travel time; and transmits downlink packets to the wireless nodes during the DDI, such that a latency requirement of the transportation safety system is satisfied.
摘要:
A method equalizes and decodes a received signal including a sequence of symbols. Subsequences of the signal are selected, wherein the subsequences are overlapping and time shifted. For each subsequence, statistics of the channel corresponding to a pattern in the subsequence are selected, wherein the statistics include high-order statistics. A transmitted signal corresponding to the received signal is then estimated based on the statistics.
摘要:
An exemplary method is disclosed to accurately estimate the center frequency of a narrow-band interference (NBI). The exemplary method uses multi-stage autocorrelation-function (ACF) to estimate an NBI frequency. The exemplary method allows an accurate estimation of the center frequency of NBI in an Ultra-Wideband system. A narrow band interference (NBI) estimator based on such a method allows a low complexity hardware implementation. The exemplary method estimates the frequency in multiple stages. Each stage performs an ACF operation on the received signals. The first stage gives an initial estimation and the following stages refine the estimation. The results of all stages are combined to produce the final estimation. An apparatus based on such a multi-stage narrow band interference frequency detector is also disclosed to improve the accuracy by combining various filters with the detector.