摘要:
An ultrasonograph of the present invention comprises a probe (1), a controller (3) connected to the probe (1), and a display (4) connected to the controller (3). The controller (4) causes the display (4) to display a detected image of a target object detected by the probe (1) and an angular position relationship image showing a relative angular position of the probe to the detected image of the target object. This enables even a non-expert to take accurate measurements.
摘要:
An ultrasonograph of the present invention comprises a probe (1), a controller (3) connected to the probe (1), and a display (4) connected to the controller (3). The controller (4) causes the display (4) to display a detected image of a target object detected by the probe (1) and an angular position relationship image showing a relative angular position of the probe to the detected image of the target object. This enables even a non-expert to take accurate measurements.
摘要:
An ultrasonic diagnostic apparatus according to the present invention includes: an ultrasonic signal processing section, which performs transmission processing for transmitting an ultrasonic wave toward a subject's blood vessel by driving a probe and reception processing for generating a received signal based on the ultrasonic wave reflected from the subject's blood vessel and received at the probe; a tomographic image processing section, which generates a tomographic image based on the received signal; a boundary detecting section, which detects the lumen-intima and media-adventitia boundaries of the blood vessel based on the received signal or the tomographic image; a vascular wall thickness calculating section, which calculates, as a vascular wall thickness value, the interval between the lumen-intima and media-adventitia boundaries detected by the boundary detecting section; a reliability determining section, which determines the reliability of the vascular wall thickness value by a signal feature of the received signal or an image information feature of the tomographic image at a location on the lumen-intima and/or media-adventitia boundaries detected; and a control section, which decides, in accordance with the decision made by the reliability determining section, that the vascular wall thickness value be defined as an intima-media thickness.
摘要:
An ultrasonic diagnostic apparatus according to the present invention includes: an ultrasonic signal processing section, which performs transmission processing for transmitting an ultrasonic wave toward a subject's blood vessel by driving a probe and reception processing for generating a received signal based on the ultrasonic wave reflected from the subject's blood vessel and received at the probe; a tomographic image processing section, which generates a tomographic image based on the received signal; a boundary detecting section, which detects the lumen-intima and media-adventitia boundaries of the blood vessel based on the received signal or the tomographic image; a vascular wall thickness calculating section, which calculates, as a vascular wall thickness value, the interval between the lumen-intima and media-adventitia boundaries detected by the boundary detecting section; a reliability determining section, which determines the reliability of the vascular wall thickness value by a signal feature of the received signal or an image information feature of the tomographic image at a location on the lumen-intima and/or media-adventitia boundaries detected; and a control section, which decides, in accordance with the decision made by the reliability determining section, that the vascular wall thickness value be defined as an intima-media thickness.
摘要:
An ultrasonic diagnostic apparatus is provided in which overlap of a displayed ultrasonic image and displayed diagnostic data can be avoided without imposing the burden of complicated operations on the operator.An ultrasonic diagnostic apparatus includes: an ultrasonic probe for transmitting an ultrasonic beam to a tissue of a biological body and receiving a reflection wave of the ultrasonic beam reflected from the tissue; an image construction section for constructing an image frame of a first image representing a tomographic image of the tissue based on the reflection wave; an image analysis section for distinguishing a region of no interest based on an image feature quantity of the image frame, the region of no interest constituting part of the image frame which is exclusive of a region of interest that includes the tomographic image of the tissue; a data generation section for generating a second image that is for display of diagnostic data; an image synthesis section for generating a synthesized image by determining a display position of the second image based on a result of the distinguishment by the image analysis section and superimposing the second image on the image frame of the first image; and a display section for displaying the synthesized image.
摘要:
A physical parameter measuring system is provided which measures a physical parameter such as a blood pressure of a person using oscillation transmission. The system includes a phase detector, an A/D converter, an arc center determining circuit, and a phase angle determining circuit. The phase detector detects a phase of a sensor signal produced, in sequence, by monitoring oscillations which are applied by an exciter and transmitted through a living body to map the signal on a two-dimensional plane as a sample point. The A/D converter converts the sample point signal into a digital sample point signal in sequence. The arc center determining circuit determines a center of an arc defined by a distribution of the sample points mapped for a given period of time. The arc determining circuit selects the sample points which are located at an interval greater than a given reference sample-to-sample distance to form a sample group consisting of at least three of the selected sample points and determines a center of a circle passing through the sample group as the center of the arc. The phase angle determining circuit determines a phase angle of the sample point as viewed from the arc center determined by the arc center determining circuit and provides it as a parameter used to determine a physical parameter of the subject.
摘要:
Provided is an ultrasonograph that can automatically optimize the sweep rate of Doppler images and M-mode images according to the heart rate of a test subject, without the need for an operator to perform a troublesome operation. The ultrasonograph is provided with a means for sending an ultrasonic beam into body tissue, a means for receiving an ultrasonic signal that has been reflected off the body tissue and a blood flow, a means for constructing a cross-sectional image of the body tissue from the received ultrasonic signal, a means for performing phase detection on an ultrasonic Doppler blood flow signal that has been reflected off the body tissue by the blood flow, a means for calculating a frequency component of the Doppler blood flow signal on which phase detection has been performed, and a means for performing a sweeping display of the calculated frequency component as Doppler images in a time series. The ultrasonograph has a heart rate measuring means for measuring the heart rate of the test subject at a predetermining timing, and the ultrasonograph also includes an optimum sweep rate calculating means for calculating an optimum sweep rate based on the heart rate obtained by the heart rate measuring means, and an optimum sweep rate setting means for setting the sweep rate of at least either of the Doppler images and M-mode images.
摘要:
One of pairs of an exciter and a sensor is selected in accordance with the detection signal which is derived from an exciter waveform induced in an artery transmitted therethrough. The pairs of exciters and sensors are arranged on a substrate in various formations. A/D converters are provided to respective detection signals. A frequency of the oscillation signal supplied to the exciter is controlled by various oscillation signal generation circuits. Bandpass filtering for extracting the exciter waveform, low-pass-filtering for extracting a natural blood pressure waveform, phase difference detection processes are provided by a microprocessor, wherein the bandpass filtering and low-pass-filtering processes may be replaced with a bandpass filter and a low pass filter, and their outputs are selected by a switching circuit and supplied to the microprocessor through one a/d converter. The frequency of the oscillation signal is controlled to an optimum frequency by detecting the detection signal and estimating the attenuation, dispersion, phase shift with respect to different frequency and by determining one of the different frequency in accordance with the estimation result. The waveform of the oscillation signal is controlled to an optimum waveform similarly.
摘要:
One of pairs of an exciter and a sensor is selected in accordance with the detection signal which is derived from an exciter waveform induced in an artery transmitted therethrough. The pairs of exciters and sensors are arranged on a substrate in various formations. A/D converters are provided to respective detection signals. A frequency of the oscillation signal supplied to the exciter is controlled by various oscillation signal generation circuits. Bandpass filtering for extracting the exciter waveform, low-pass-filtering for extracting a natural blood pressure waveform, phase difference detection processes are provided by a microprocessor, wherein the bandpass filtering and low-pass-filtering processes may be replaced with a bandpass filter and a low pass filter, and their outputs are selected by a switching circuit and supplied to the microprocessor through one a/d converter. The frequency of the oscillation signal is controlled to an optimum frequency by detecting the detection signal and estimating the attenuation, dispersion, phase shift with respect to different frequency and by determining one of the different frequency in accordance with the estimation result. The waveform of the oscillation signal is controlled to an optimum waveform similarly.
摘要:
An ultrasonic diagnostic apparatus is provided in which overlap of a displayed ultrasonic image and displayed diagnostic data can be avoided without imposing the burden of complicated operations on the operator.An ultrasonic diagnostic apparatus includes: an ultrasonic probe for transmitting an ultrasonic beam to a tissue of a biological body and receiving a reflection wave of the ultrasonic beam reflected from the tissue; an image construction section for constructing an image frame of a first image representing a tomographic image of the tissue based on the reflection wave; an image analysis section for distinguishing a region of no interest based on an image feature quantity of the image frame, the region of no interest constituting part of the image frame which is exclusive of a region of interest that includes the tomographic image of the tissue; a data generation section for generating a second image that is for display of diagnostic data; an image synthesis section for generating a synthesized image by determining a display position of the second image based on a result of the distinguishment by the image analysis section and superimposing the second image on the image frame of the first image; and a display section for displaying the synthesized image.